Antimicrobial polymers with immobilized active groups for use in medicine

Keywords: immobilization, polymers, active chlorine, active oxygen, wound dressings, antimicrobial activity.

Abstract

Annotation. Polymeric materials with immobilized active groups are widely used in medicine. Some of them have pronounced antimicrobial properties and, to a certain extent, are alternatives to antibiotics. The aim of this research is to study the properties of new polymeric materials with immobilized groups-donors of active chlorine and active oxygen. Polymers of the FIBAN brand in the form of staple fiber and non-woven fabric, which are convenient for the manufacture of dressings, have been used as carriers. A special technology has been developed for the chemical grafting of N-chlorosulfonamide and peroxycarboxylic functional groups on them. The synthesized materials retain appropriate physical and mechanical properties and are stable enough. The antimicrobial activity of these materials has been studied in vitro with the modified method of “agar plates”. It has been proven that all of them have powerful microbicidal properties, especially against S. aureus, which is extremely important, given that these microorganisms are one of the most common multi-resistant pathogens. The antimicrobial and wound healing activity of N-chlorosulfonamide material in vivo has been studied on artificially infected wounds of laboratory rats. The polymer has been used as a component of the sticky wound dressing. It has been found that the use of such dressings reduces the number of pathogenic staphylococci 4–10 times and accelerates reparative processes. Thus, the synthesized polymers with immobilized active groups are effective local antimicrobial agents and can be recommended as components of wound dressings. It is advisable to further study their hemostatic properties, subchronic and chronic toxicity, their effect on basic biochemical parameters, as well as the study of the chemical composition of the different environments that are processed with them.

Downloads

Download data is not yet available.

References

1. Burmistrov, K. S., Murashevych, B. V., Toropin, V. M., & Toropin, M. V. (2016). Patent Ukrainy na korysnu model 112187 [Utility Model Patent 112187]. Kyiv: Derzhavne patentne vidomstvo Ukrainy.
2. Dronov, S. N., Mamchur, V. I., Koshevaya, I. P., Stepanskij, D. A., Kremenchuckij, G. N., Toropin, V. N., … Burmistrov, K. S. (2019). Novye perevyazochnye materialy prolongirovannogo dejstviya [New dressings of prolonged action]. Zaporozhskij medicinskij zhurnal – Zaporizhzhya medical journal, 21(3), 365–372. DOI: 10.14739/2310-1210.2019.3.169189.
3. Mazur, I. A., Mamchur, V.I., & Podpletnyaya, E. A. (2008). Patent RF 2317818. Moskva: Federalnaya sluzhba po intellektualnoj sobstvennosti, patentam i tovarnym znakam [RF patent 2317818. Moscow: Federal Service for Intellectual Property, Patents and Trademarks].
4. Toropin, V. N., Burmistrov, K. S., & Surmasheva, E. V. (2016). Izuchenie antimikrobnyh svojstv immobilizovannyh voloknistyh N,N-dihlorsulfonamidov [The study of the antimicrobial properties of immobilized fibrous N, N-dichlorosulfonamides]. ScienceRise: Pharmaceutical Science, 4 (4), 48–52. DOI: 10.15587/2519-4852.2016.85905.
5. Toropin, V. N., Surmasheva, E. V., Romanenko, L. I. (2016). Izuchenie antimikrobnyh svojstv immobilizovannyh voloknistyh N-hlorsulfonamidov [The study of the antimicrobial properties of immobilized fibrous N-chlorosulfonamides]. Aktualni pytannia farmatsevtychnoi i medychnoi nauky ta praktyky – Topical issues in pharmaceutical and medical science and practice, 3, 54–58. DOI: 10.14739/2409-2932.2016.3.77993.
6. Toropin, V. M., Stepanskyi, D. O., Kremenchutskyi, H. M., Burmistrov, K. S., Murashevych, B. V., & Koshova, I. P. (2018). Mikrobiolohichni doslidzhennia immobilizovanoho N-khlorsulfonamidu na sopolimeri styrolu [Microbiological studies of immobilized N-chlorosulfonamide on styrene copolymers]. Visnyk Vinnytskoho natsionalnoho medychnoho universytetu – Reports of the Vinnitsa National Medical University, 22(2), 289-292. DOI: 10.31393/ reports-vnmedical-2018-22(2)-11.
7. Filippovich, S. D., Akulich, Z. I., Shunkevich, A. A., Grachek, V. I. (2014). Novye voloknistye anionity na osnove poliakrilonitrilnyh volokon IFOH NAN Belarusi [New fibrous anion exchangers based on polyacrylonitrile fibers IFOKh NAS of Belarus]. Vesci nacyyanalnaj akademii navuk Belarusi – News of the National Academy of Sciences of Belarus, 2, 81–85. Vzyato s https://vestichem.belnauka.by/jour/article/view/35/0.
8. Adegoke, A. A., Faleye, A. C., Gulshan, S., & Stenström, T. A. (2016). Antibiotic Resistant Superbugs: Assessment of the Interrelationship of Occurrence in Clinical Settings and Environmental Niches. Molecules, 22(1), 29–46. DOI: 10.3390/molecules22010029.
9. Aslam, B., Wang, W., Arshad, M.I., Khurshid, M., Muzammil, S., Rasool, M.H. ... Baloch, Z. (2018). Antibiotic resistance: a rundown of a global crisis. Infection and Drug Resistance, 11, 1645–1658. DOI: 10.2147/IDR.S173867.
10. Green, J-B.D., Fulghum, T., & Nordhaus, M. A. (2011). A review of immobilized antimicrobial agents and methods for testing. Biointerphases, 6(4), MR13-MR28. DOI: 10.1116/1.3645195.
11. Huang, K. S., Yang, C. H., Huang, S. L., Chen, C. Y., Lu, Y. Y., & Lin, Y. S. (2016). Recent Advances in Antimicrobial Polymers: A Mini-Review. International Journal of Molecular Sciences, 17(9), 1578–1596. DOI: 10.3390/ijms17091578.
12. Kamaruzzaman, N. F., Tan, L. P., Hamdan, R. H., Choong, S. S., Wong, W. K., Gibson, A. J., … Pina, M. F. (2019). Antimicrobial Polymers: The Potential Replacement of Existing Antibiotics? International Journal of Molecular Sciences, 20(11), 2747–2785. DOI: 10.3390/ijms20112747.
13. Kunduru, K. R., Basu, A., & Domb, A. (2016). Biodegradable Polymers: Medical Applications. In H. F. Mark (Ed.). Encyclopedia of Polymer Science and Technology (4th edition). (p. 1–22). New Jersey: Wiley Blackwell. DOI: 10.1002/0471440264.pst027.pub2.
14. Maitz, M. F. (2015). Applications of synthetic polymers in clinical medicine. Biosurface and Biotribology, 1(3), 161–176. DOI: 10.1016/j.bsbt.2015.08.00.
15. Modjarrad, K., & Ebnesajjad, S. (Eds.). (2013). Handbook of Polymer Applications in Medicine and Medical Devices (1st edition). New York: William Andrew.
16. Olędzka, E., Sobczak, M., & Kołodziejski, W. L. (2007). Polymers in medicine – review of recent studies. Polimery, 11(12), 795–803. DOI: 10.14314/polimery.2007.795.
17. Peterson, G. I., Dobrynin, A. V., & Becker, M. L. (2017). Biodegradable Shape Memory Polymers in Medicine. Advanced Healthcare Materials, 6(21), 1–16. DOI: 10.1002/adhm.201700694.
18. Pidot, S. J., Gao, W., Buultjens, A. H., Monk, I. R., Guerillot, R., Carter, G. P. ... Stinear, T. P. (2018). Increasing tolerance of hospital Enterococcus faecium to handwash alcohols. Science Translational Medicine, 10(452), 1–10. DOI: 10.1126/scitranslmed.aar6115.
19. Piozzi, A., & Francolini, I. (2013). Editorial of the Special Issue Antimicrobial Polymers. International Journal of Molecular Sciences, 14(9), 18002–18008. DOI: 10.3390/ijms140918002.
20. Ragheb, M. N., Thomason, M. K., Hsu, C., Nugent, P., Gage, J., Samadpour, A. N. Merrikh, H. (2019). Inhibiting the Evolution of Antibiotic Resistance. Molecular Cell, 73(1), 157–165. DOI: 10.1016/j.molcel.2018.10.015.
21. Soldatov, V., Pawlowski, L., Shunkevich, A., & Wasag, H. (2004). New materials and technologies for environmental engineering: synthesis and structure of ion exchange fibers. Lublin: LiberDuoColor.
22. Young, M. (2003). The functionality and cost advantages of high-performance polymers. Medical device technology, 14(7), 12–15. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/14528807.
Published
2019-12-30
How to Cite
Toropin, V., Murashevych, B., Kremenchutskyi, H., Stepanskyi, D., Maslak, H., & Burmistrov, K. (2019). Antimicrobial polymers with immobilized active groups for use in medicine. Reports of Vinnytsia National Medical University, 23(4), 659-666. https://doi.org/10.31393/reports-vnmedical-2019-23(4)-17