Study of antioxidant and anticytolytic activity of extract from Prunus domestica leaves

Keywords: Prunus domestica leaves, lipid peroxidation, antioxidant and anticytolytic activity.

Abstract

Annotation. One of the actual problems of current science is search and creation on the basis of plant poliphenolics new medical products for pharmacocorrection of functional disorders of the liver. The aim of the work was to study the antioxidant and anticytolytic properties of the extract from Prunus domestica leaves on the tissue of the model liver pathology and to determine its most therapeutically active dose. The subject of investigations was a dry extract obtained from the leaf of European plum as well as the drugs of comparison – silibor and α-tocopherol. The tests were carried out on 39 animals divided into experimental groups: intact control, control pathology, the group of animals that were given the investigated extract at the appropriate doses and the group of animals that were given the drugs of the comparison. Functional disorders of the liver were caused by intra-gastrical injection of 50%-olium solution of hepatotoxin – tetrachloromethane. Evaluation of the efficacy of administration of extract from European plum leaf was carried out according to the amount of TBC-active products in liver homogenate and the activity of cytolytic enzyme alanine transaminas in blood serum. Biochemical and statistical (Statistica 6.0 program, Student’s t-criterion, Mann-Whitney test) analysis methods were used in the investigations. The accepted significance level was p≤0.05. As a result of experimental studies it was found that the extract from leaves Prunus domestica at all doses tested showed a different ability to hinder the processes of lipid peroxidation in vitro conditions, and at doses of 1.0 and 2.0 mg/g did not come from the antioxidant properties of α-tocopherol. The most therapeutically effective dose of the extract from leaves Prunus domestica was found to be 25 mg/kg, which maximally halved the formation of lipid peroxidation products on the body of acute tetrachloromethane hepatitis. The extract showed different antioxidant properties exceeding the activity of silibor by 2.3 times and did not match the drug for anticytolytic activity, reducing the activity of the enzyme alanine transaminas by 56.0% compared to the control pathology.

Downloads

Download data is not yet available.

References

[1] Bao, Yu.-L., Wang, L., Pan H.-T., Zhang, T.-R., Chen, Ya.-H., Xu, S.-J., … & Li, S.-W. (2021). Animal and Organoid Models of Liver Fibrosis. Front Physiol., 12, 666138. doi: 10.3389/fphys.2021.666138
[2] Beszterda, M., & Frański, R. (2021). Elucidation of glycosylation sites of kaempferol di-O-glycosides from methanolic extract of the leaves of Prunus domestica subsp. syriaca. Rapid Commun. Mass Spectrom., 35(12), e9100. doi: 10.1002/rcm.9100
[3] Bose, M., Kamra, M., Mullick, R., Bhattacharya, S., Das, S., & Karande, A. A. (2017). Identification of a flavonoid isolated from plum (Prunus domestica) as a potent inhibitor of Hepatitis C virus entry. Sci Rep., 7(1), 3965. doi: 10.1038/s41598-017-04358-5
[4] Brol, M. J., Rösch, F., Schierwagen, R., Magdaleno, F., Uschner, F. E., & Manekeller, S. (2019). Combination of CCl with alcoholic and metabolic injuries mimics human liver fibrosis. Am. J. Physiol. Gastroint. Liver Physiol., 317, 182-194. doi: 10.1152/ajpgi.00361.2018
[5] Brovold, M., Keller, D., & Soker, S. (2020). Differential fibrotic phenotypes of hepatic stellate cells within 3D liver organoids. Biotechnol. Bioeng., 117, 2516-2526. doi: 10.1002/bit.27379
[6] Cenini, G., Lloret, A., & Cascella, R. (2019). Oxidative stress in neurodegenerative diseases: from a mitochondrial point of view. Oxid. Med. Cell. Longev, 2105607. doi: 10.1155 / 2019/2105607
[7] Chang, J. W., Kim, C. S., Kim, S. B., Park, S. K., Park, J. S., & Lee, S. K. (2006). Proinflammatory cytokine-induced NF-kappaB activation in human mesangial cells is mediated through intracellular calcium but not ROS: effects of silymarin. Nephron. Exp. Nephrol., 103(4), e156-65. doi: 10.1159/000092906
[8] Chiorcea-Paquim, A.-M., Enache, T. A., Gil, E. De S., & Oliveira-Brett, A. M. (2020). Natural phenolic antioxidants electrochemistry: Towards a new food science methodology. Compr. Rev. Food Sci. Food Saf., 19(4), 1680-1726. doi: 10.1111/1541-4337.12566
[9] Drogovoz, S. M., Salnikova, S. I., Skakun, N. P., & Slyshkov, V. V. (1994). Методические рекомендации по экспериментальному изучению желчегонной, холеспазмолитической, холелитиазной и гепатопротекторной активности новых лекарственных средств [Methodical recommendations for experimental study of choleretic, cholespasmolytic, cholelithiasis and hepatoprotective activity of new drugs]. 46.
[10] Drogovoz, S. M., Borodina, T. V., & Derimedvid, L. V. (1998). Експериментальне обгрунтування альтернативи вибору гепатопротекторів [Experimental substantiation of the alternative choice of hepatoprotectors]. Ліки ˗ Medicine, 5, 32-35.
[11] Iasella, C. J., Johnson, H. J., & Dunn, M. A. (2017). Adverse Drug Reactions: Type A (Intrinsic) or Type B (Idiosyncratic). Clin. Liver Dis., 21(1), 73-87. doi: 10.1016/j.cld.2016.08.005
[12] Kawaguchi, M., Nukaga, T., Sekine, S., Takemura, A., Susukida, T., Oeda, S., …& Ito, K. (2020). Mechanism-based integrated assay systems for the prediction of drug-induced liver injury. Toxicol. Appl. Pharmacol., 1(394), 114958. doi: 10.1016/j.taap.2020.114958
[13] Nagral, A., Adhyaru, K., Rudra, O. S., Gharat, A., & Bhandare, S. (2021). Herbal Immune Booster-Induced Liver Injury in the COVID-19 Pandemic - A Case Series. J. Clin. Exp. Hepatol., 11(6), 732-738. doi: 10.1016/j.jceh.2021.06.021
[14] Navarro, M., Moreira, I., Arnaez E., Quesada, S., Azofeifa, G., …& Chen, P. (2018). Polyphenolic Characterization and Antioxidant Activity of Malus domestica and Prunus domestica Cultivars from Costa Rica. Foods., 7(2), 15. doi: 10.3390/foods7020015
[15] Navarro-Hoyos, M., Arnáez-Serrano, E., Quesada-Mora, S., Azofeifa-Cordero, G., Wilhelm-Romero, K., Quirós-Fallas, M. I., …& Sánchez-Kopper, A. (2021). Polyphenolic QTOF-ESI MS Characterization and the Antioxidant and Cytotoxic Activities of Prunus domestica Commercial Cultivars from Costa Rica. Molecules, 26(21), 6493. doi: 10.3390/molecules26216493
[16] Pan, Yi., Cao, M., You, D., Qin, G., & Liu, Z. (2019). Research Progress on the Animal Models of Drug-Induced Liver Injury: Current Status and Further Perspectives. Biomed. Res. Int., 15. doi: 10.1155/2019/1283824
[17] Parvez, M. K., & Rishi, V. (2019). Herb-Drug Interactions and Hepatotoxicity. Curr. Drug Metab., 20(4), 275-282. doi: 10.2174/1389200220666190325141422
[18] Peng, Y., Wu, Z., Yang, H., Cai, Yi., Liu, G., Li, & Tang, Yu. (2019). Insights into mechanisms and severity of drug-induced liver injury via computational systems toxicology approach. Toxicol. Lett., 312, 22-33. doi: 10.1016/j.toxlet.2019.05.005
[19] Santos-Buelga, C., González-Paramás, A. M., Oludemi, T., Ayuda-Durán, B., & González-Manzano, S. (2019). Plant phenolics as functional food ingredients. Adv. Food Nutr. Res., 90, 183-257. doi: 10.1016/bs.afnr.2019.02.012
[20] Shan, S., Huang, X., Shah, M. H., & Abbasi, A. M. (2019). Evaluation of Polyphenolics Content and Antioxidant Activity in Edible Wild Fruits. Biomed Res. Int., 2019, Article ID 1381989, 11. doi: 10.1155/2019/1381989
[21] Shen, J. X., Youhanna, S., Shafagh, R. Z., Kele, J., & Lauschke, V. M. (2020). Chem. Res. Toxicol., 33(1), 38-60. doi: 10.1021/acs.chemrestox.9b00245
[22] Soni, M., Mohanty, P. K., & Jaliwala, Y. F. (2011). Hepatoprotective activity of fruits of Prunus Domestica. Int. J. Pharma Bio Sci., 2(2), 439-453.
[23] Tomic, J., Stampar, F., Glisic, I., & Jakopic, J. (2019). Phytochemical assessment of plum (Prunus domestica L.) cultivars selected in Serbia. Food Chem., 299, 125-113. doi: 10.1016/j.foodchem.2019.125113
[24] Ullah, A., Munir, S., Badshah, S. L., Khan. N., Ghani, L., Poulson, B. G., …& Jaremko, M. (2020). Important Flavonoids and Their Role as a Therapeutic Agent. Molecules, 25(22), 5243. doi: 10.3390/molecules25225243
[25] Unsal, V., Cicek, M., & Sabancilar, İ. (2020). Toxicity of carbon tetrachloride, free radicals and role of antioxidants. Rev. Environ Health., 36(2), 279-295. doi: 10.1515/reveh-2020-0048
[26] Vlizlo, V. V., Fedoruk, R. S., & Ratych, I. B. (2012). Лабораторні методи дослідження у біології, тваринництві та ветеринарній медицині [Laboratory methods of investigation in biology, stock-breeding and veterinary]. Spolom, 764.
[27] Voronina, L. M., Desenko, V. F., Kravchenko, V. M., & Sakharova, T. S. (1996). Посібник до лабораторних і семінарських занять з біологічної хімії: навч.-метод. посібник для ВУЗів [Manual for laboratory and seminar classes in biological chemistry: teaching method. manual for universities].
[28] Zhao, X.-A., Chen, G.-M., Liu, Y., Chen Y.-Xi., Wu, H.-Y., Chen, J., … & Wu, C. (2017). Inhibitory effect of silymarin on CCl4-induced liver fibrosis by reducing Ly6Chi monocytes infiltration. Int. J. Clin. Exp. Pathol., 10(12), 11941-11951.
Published
2022-03-28
How to Cite
Seniuk, I. V., Kravchenko, V. M., & Tkachenko, O. V. (2022). Study of antioxidant and anticytolytic activity of extract from Prunus domestica leaves. Reports of Vinnytsia National Medical University, 26(1), 12-16. https://doi.org/10.31393/reports-vnmedical-2022-26(1)-02