Peculiarities of glucose intake in fetal tissues during acute hypoxia

  • V.I. Oshovskyy
Keywords: fetal hypoxemia, blood-sparing effect, radioactive glucose, PET-CT.

Abstract

The article presents the primary results of an experimental study of the processes of consumption of radioactive glucose in various tissues and organs of the fetus (sheep) during acute hypoxia, induced by a decrease in the oxygen tension in the respiratory mixture. The distribution of glucose was determined using a combination of positron emission and computed tomography.

Downloads

Download data is not yet available.

References

1. Salihu, H. M., Sharma, P.P. & Aliyu, M. H. (2006). Is small for gestational age a marker of future fetal survival in utero? Obstet. Gynecol., 107, 851–6.
2. Say, L., Gulmezoglu, A. M. & Hofmeyr, G. J. (2003). Maternal nutrient supplementation for suspected impaired fetal growth. Cochrane Database Syst. Rev., CD000148.
3. Surkan, P. J., Stephansson, O. & Dickman, P. W. (2004). Previous preterm and small-for-gestational-age births and the subsequent risk of stillbirth. N. Engl. J. Med., 350, 777–85.
4. Jensen, A., Hohmann, M. & Kunzel, W. (1987). Redistribution of fetal circulation during repeated asphyxia in sheep: effects on skin blood flow, transcutaneous PO2, and plasma catecholamines. J. Dev. Physiol., 9, 41–55.
5. Edelstone, D. I., Rudolph, A. M. & Heymann, M. A. (1980). Effects of hypoxemia and decreasing umbilical flow liver and ductus venosus blood flows in fetal lambs. Am. J. Physiol., 238, 656–63.
6. Itskovitz, J., LaGamma, E. F. & Rudolph, A. M. (1987). Effects of cord compression on fetal blood flow distribution and O2 delivery. Am. J. Physiol., 252, 100–9.
7. Power, G. G. & Longo, L. D. (1975). Fetal circulation times and their implications for tissue oxygenation. Gynecol. Invest., 6, 342–55.
8. Tchirikov, M., Rybakowski, C. & Huneke, B. (1998). Blood flow through the ductus venosus in singleton and multifetal pregnancies and in fetuses with intrauterine growth retardation. Am. J. Obstet. Gynecol., 178, 943–9.
9. Tchirikov, M. Eisermann, K. & Rybakowski, C. (1998). Doppler ultrasound evaluation of ductus venosus blood flow during acute hypoxemia in fetal lambs. Ultrasound Obstet. Gynecol., 11, 426–31.
10. Tchirikov, M., Hecher, K. & Deprest, J. (2001). Doppler ultrasound measurements in the central circulation of anesthetized fetal sheep during obstruction of umbilical-placental blood flow. Ultrasound Obstet. Gynecol., 18, 656–61.
11. Kiserud, T., Rasmussen, S. & Skulstad, S. (2000). Blood flow and the degree of shunting through the ductus venosus in the human fetus. Am. J. Obstet. Gynecol. 182, 147–53.
12. Okamura, K., Tanigawara, S. & Shintaku, Y. (1989). Alteration of FHR pattern and cerebral metabolic rate of glucose of the fetus measured by positron emission tomography during progress of acidemia The significance of overshoot acceleration in FHR. J. Perinat. Med., 17, 289–95.
Published
2017-09-29
How to Cite
Oshovskyy, V. (2017). Peculiarities of glucose intake in fetal tissues during acute hypoxia. Reports of Vinnytsia National Medical University, 21(1(2), 247-252. Retrieved from https://reports-vnmedical.com.ua/index.php/journal/article/view/120