Aberrant glycosylation of brain tumors


Keywords: glycosylation, glycans, brain tumors.

Abstract

Annotation. On the territory of Ukraine there is an increase in tumors of the central nervous system. Oncological processes are accompanied by disruption of glycosylation processes as well as changes in the configuration of the carbohydrate part of glycoconjugates. Glycosylation of proteins is a posttranslational modification that affects more than half of all known proteins. Glycans covalently linked to biomolecules modulate their functions through both direct interactions, such as the recognition of glycan structures by binding partners, and indirect mechanisms that control conformation, stability, and protein metabolism. The purpose of this review was to discuss aberrant glycosylation associated with brain cancer. For this purpose, 42 sources from the main databases (Elsevier, Pubmed, Web of Science, Google Scholar) for 2016-2022 were used. Altered sialylation and fucosylation of N- and O-glycans play a certain role in the development and progression of brain cancer. Glycans affect various aspects of tissue development, storing a large amount of biochemical information that can be used to discover new biomarkers. The development of universal and accurate glycoanalytical platforms is crucial to provide the scientific community with reliable tools for disclosing biochemical information encoded by glycans.

References

[1] Akintayo, A., & Stanley, P. (2019). Roles for Golgi glycans in oogenesis and spermatogenesis. Front Cell Dev Biol., 7, 98. doi:10.3389/fcell.2019.00098

[2] Al-Rashed, M., Foshay, K., & Abedalthagafi, M. (2020). Recent Advances in Meningioma Immunogenetics. Front Oncol., 8(9), 1472. doi: 10.3389/fonc.2019.01472

[3] Al-Salihia, M., M., Al-Jebura, M. S., Lozada-Martinez I. D., Rahman, M. M., & Rahman, S. (2021). Brain metastasis from prostate cancer: a review of the literature with an illustrative case. Inter J Surg Open, 37, 100419. doi.org/10.1016/j.ijso.2021.100419

[4] Ashkani, K., & Naidoo, J. (2016). Glycosyltransferase gene expression profiles classify cancer types and propose prognostic subtypes. Sci Rep., 6, 26451. doi: 10.1038/srep26451

[5] Barkovskaya, A., Buffone, Jr., A., Žídek, M., & Valerie, M. (2020). Proteoglycans as mediators of cancer tissue mechanics. Front Cell Dev Bio., 8, 569377. doi.org/10.3389/fcell.2020.569377

[6] Brown, D. V., Filiz, G., Daniel, P. M., Hollande, F., Dworkin, S., Amiridis, S., … & Mantamadiotis, T. (2017). Expression of CD133 and CD44 in glioblastoma stem cells correlates with cell proliferation, phenotype stability and intra-tumor heterogeneity. PloS one, 12, 2 e0172791. doi:10.1371/journal.pone.0172791

[7] Cuello, H. A., Ferreira, G. M., Gulino, C. A., Toledo, A. G., Segatori, V. I., & Gabri, M. R. (2020). Terminally sialylated and fucosylated complex N-glycans are involved in the malignant behavior of high-grade glioma. Oncotarget, 11, 4822-4835. doi: 10.18632/oncotarget.27850

[8] D’Souza, Z., Sumya, F.T., Khakurel, A., & Lupashin, V. (2021). Getting sugar coating right! The role of the Golgi trafficking machinery in glycosylation. Cells, 10(12), 3275. doi:10.3390/cells10123275

[9] Ford, C., Parchure, A., von Blume, J., & Burd, C. G. (2021). Cargo sorting at the trans-Golgi network at a glance. J Cell Sci, 134(23), jcs259110. doi: 10.1242/jcs.259110.

[10] Josic, D., Martinovic, T., & Pavelic, K. (2019). Glycosylation and metastases. Electrophoresis, 40(1), 140-150. doi: 10.1002/elps.201800238

[11] Kellokumpu, S. (2019). Golgi pH, ion and redox homeostasis: how much do they really matter? Front Cell Dev Biol., 7, 93. https://doi.org/10.3389/fcell.2019.00093

[12] Khan, T., & Cabral, H. (2021). Abnormal glycosylation of cancer stem cells and targeting strategies. Front Oncol, 11, 649338. doi.org/10.3389/fonc.2021.649338

[13] Khosrowabadi, E., Wenta, T., Keskitalo, S., Manninen, A., & Kellokumpu, S. (2022). Altered glycosylation of several metastasis-associated glycoproteins with terminal GalNAc defines the highly invasive cancer cell phenotype. Oncotarget, 13, 73-89. doi:10.18632/oncotarget.28167

[14] Liao, W. C., Liao, C. K., & Tseng, T. J. (2020). Chondroitin sulfate synthase 1 enhances proliferation of glioblastoma by modulating PDGFRA stability. Oncogenesis, 9, 9. doi:10.1038/s41389-020-0197-0

[15] Liao, H., & Klaus, C. (2020). Control of innate immunity by sialic acids in the nervous tissue . Int. J. Mol. Sci, 21(15), 5494. doi:10.3390/ijms21155494

[16] Lim, M., Xia, Y., Bettegowda, C., & Weller, M. (2018). Current state of immunotherapy for glioblastoma. Nat. Rev. Clin. Oncol., 15(7), 422-442. doi: 10.1038/s41571-018-0003-5

[17] Magalhães, A., Duarte, H. O., & Reis, C. A. (2017). Aberrant glycosylation in cancer: a novel molecular mechanism controlling metastasis. Cancer cell, 31(6), 733-735. doi: 10.1016/j.ccell.2017.05.012

[18] Mansour, K., Elwi, D. A., Khalifa, S. E., & Abdelmonem Ibrahim, H. (2021). Immunohistochemical Expression of MUC4 in Different Meningioma Subtypes in Comparison to Some Mesenchymal Non-Meningothelial Tumors. Macedonian Journal of Medical Sciences, 9(A), 626-631. https://doi.org/10.3889/oamjms.2021.6783

[19] Miroshnikova, Y. A., Mouw, J. K., Barnes, J. M., Pickup, M. W., Lakins, J. N., Kim, Y., … & Weaver, V. M. (2016). Tissue mechanics promote IDH1-dependent HIF1α-tenascin C feedback to regulate glioblastoma aggression. Nat Cell Biol., 18, 1336-1345. doi: 10.1038/ncb3429

[20] Moll, T., Shaw, P. J., & Cooper-Knock, J. (2020). Disrupted glycosylation of lipids and proteins is a cause of neurodegeneration. Brain, 143(5), 1332-1340. doi: 10.1093/brain/awz358

[21] Morla, S. (2019). Glycosaminoglycans and glycosaminoglycan mimetics in cancer and inflammation. Int J Mol Sci., 20, 1963. doi: 10.3390/ijms20081963

[22] Netronina, O. V., Maslak, G. S., & Novik, E. Yu. (2018). Уровень лектин-связывающих лейкоцитов в крови больных доброкачественными первичными опухолями [The level of lectin-binding leukocytes in the blood of patients with benign primary tumors], Материалы республиканской с международным участием научно-практической конференции, посвященной 60-летию Гродненского государственного медицинского университета (сс. 570-573). [Materials of the republican scientific-practical conference with international participation dedicated to the 60th anniversary of the Grodno State Medical University. (pp. 570-573)].

[23] Pandey, R., Caflisch, L., Lodi, A., Brenner, A. J., Tiziani, S. (2017). Metabolomic signature of brain cancer. Mol Carcinog., 56(11), 2355-2371. doi: 10.1002/mc.22694

[24] Peixoto, A., Relvas-Santos, M., Azevedo, R., Santos, L., L., & Ferreira, J. A. (2019). Protein Glycosylation and Tumor Microenvironment Alterations Driving Cancer Hallmarks. Front Oncol., 9, 380. doi:10.3389/fonc.2019.00380

[25] Pinho, S. S., & Reis, C. A. (2015). Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer, 15(9), 540-555. doi: 10.1038/nrc3982

[26] Reily, C., Stewart, T. J., Renfrow, M. B., & Novak, J. (2019). Glycosylation in health and disease. Nat Rev Nephrol., 15, 346-366. doi.org/10.1038/s41581-019-0129-4

[27] RodrÍguez, E., Schetters, S. T. T., & van Kooyk, Y. (2018). The tumour glyco-code as a novel immune checkpoint for immunotherapy. Nat. Rev. Immunol., 18, 204-211. doi: 10.1038/nri.2018.3

[28] Rudd, P., Karlsson, N. G., Khoo, K. H., & Packer, N. H. (2015-2017). Glycomics and Glycoproteomics. In Varki, A., Cummings, R. D., Esko, J. D., Stanley, P., Hart, G. W., Aebi, M., … & Seeberger, P. H. Essentials of Glycobiology. (3rd ed.). Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press. DOI: 10.1101/glycobiology.3e.051

[29] Samal, J., Saldova, R., Rudd, P. M., Pandit, A., & O’Flaherty, R. (2020). Region-specific characterization of N-Glycans in the striatum and substantia nigra of an adult rodent brain. Anal Chem., 92(19), 12842-12851. doi: 10.1021/acs.analchem.0c01206

[30] Varki, A. (2017). Biological roles of glycans. Glycobiology, 27(1), 3-49. doi.org/10.1093/glycob/cww086

[31] Veillon, L., Fakih, C., Abou-El-Hassan, H., Kobeissy, F., & Mechref, Y. (2018). Glycosylation changes in brain cancer. ACS Chem Neurosci., 9(1), 51-72. doi: 10.1021/acschemneuro.7b00271

[32] Wang, H. H., Liao, C. C., Chow, N. H., Huang, L. L., Chuang, J. I., Wei, K. C., & Shin, J. W. (2017). Whether CD44 is an applicable marker for glioma stem cells. Am J Transl Res., 9(11), 4785-4806. PMID: 29218080

[33] Wang, M., Zhu, J., Lubman, D. M., & Gao C. (2019). Aberrant glycosylation and cancer biomarker discovery: a promising and thorny journey. Clin Chem Lab Med., 57(4), 407-416. doi:10.1515/cclm-2018-0379

[34] Wielgat, P., Trofimiuk, E., Czarnomysy, R., Braszko, J. J., & Car, H. (2019). Sialic acids as cellular markers of immunomodulatory action of dexamethasone on glioma cells of different immunogenicity. Mol Cell Biochem., 455(1-2), 147-157. doi:10.1007/s11010-018-3478-6

[35] Wielgat, P., Niemirowicz-Laskowska, K., Wilczewska, A. Z., & Car, H. (2021). Sialic acid-modified nanoparticles - new approaches in the glioma management-perspective review. Int J Mol Sci., 22(14), 7494. doi:10.3390/ijms22147494

[36] Williams, S. E., Mealer, R. G., Scolnick, E. M., Smoller, J. W., & Cummings, R. D. (2020). Aberrant glycosylation in schizophrenia: a review of 25 years of post-mortem brain studies. Mol Psychiatry, 25(12), 3198-3207. doi: 10.1038/s41380-020-0761-1

[37] Wu, G., Song, X., Liu, J., Li, S., Gao, W., Qiu, M., … & Chen, Y. (2020). Expression of CD44 and the survival in glioma: a meta-analysis. Biosci Rep., 40(4), BSR20200520. doi.org/10.1042/BSR20200520

[38] Yale, A. R., Nourse, J. L., Lee, K. R., Ahmed, S. N., Arulmoli, J., Jiang, A. Y. L., … & Flanagan, L.A. (2018). Cell surface N-glycans influence electrophysiological properties and fate potential of neural stem cells. Stem Cell Reports, 11(4), 869-882. doi:10.1016/j.stemcr.2018.08.011

[39] Yan, Z., & Wang, S. (2020). Proteoglycans as Therapeutic Targets in Brain Cancer. Front. Oncol., 10, 1358. doi.org/10.3389/fonc.2020.01358

[40] Zhang, Q., Ma, C., Chin, L.S., & Li, L. (2020). Integrative glycoproteomics reveals protein N-glycosylation aberrations and glycoproteomic network alterations in Alzheimer's disease. Sci Adv., 6(40), eabc5802. doi: 10.1126/sciadv.abc5802

[41] Zhou, J. Y., Oswald, D. M., Oliva, K. D., Kreisman, L. S. C., & Cobb, B. A. (2018). The glycoscience of immunity. Trends Immunol., 39, 523-535. doi: 10.1016/j.it.2018.04.004

[42] Zhou, X., Zhai, Y., Liu, C., Yang, G., Guo, J., Li, G., … & Guan, F. (2020). Sialidase NEU1 suppresses progression of human bladder cancer cells by inhibiting fibronectin-integrin α5β1 interaction and Akt signaling pathway. Cell Commun Signal., 18(1), 44. doi: 10.1186/s12964-019-0500-x
Published
2022-03-28
How to Cite
Netronina, O. V., Maslak, H. S., Bondarenko, O. S., Chernousova, N. M., & Abraimova, O. E. (2022). Aberrant glycosylation of brain tumors. Reports of Vinnytsia National Medical University, 26(1), 148-152. https://doi.org/https://doi.org/10.31393/reports-vnmedical-2022-26(1)-27