Histochemical characteristics of nitrergic neuronal system during acute alcohol intoxication and nNOS blockage in the rat lateral septum

Keywords: NO-synthase, nitric oxide, lateral septum, ethanol, 7-NI.

Abstract

Annotation. Alcohol is a one of the most frequently consumed substances of abuse, which can cause addiction or alcohol use disorders (AUDs). Alcohol addiction leads to decrease of the life quality of patients and considerable economic burden. Neuronal mechanisms of addiction are intensively studied. One of the most important systems involved in this process is a brain reward system that includes lateral septum (LS). Additionally alcohol consumption changes activity of the neurotransmitter systems including the nitric oxide (NO). Recent studies for blockage of nitric oxide synthase (NOS) for cocaine addiction and late stages of AUDs demonstrated that a group of the substances known as blockers of NOS can be referred to as candidates for alcohol addiction therapy. The aim of our research was to investigate histochemical characteristics of NO-system in LS, its response to acute alcohol intoxication including or excluding neuronal NOS (nNOS) blockage with selective inhibitor – 7-nitroindazole (7-NI). This study involved three experimental groups of animals (control group (n=4), group with acute alcohol intoxication (n=4), group of nNOS blockage with acute alcohol intoxication (n=4)). For statistical analysis, one-way Kruskal-Wallis test was implemented to reveal differences between groups (Matlab, Mathworks). We have identified NOS-positive structures in LS consisting of big neurons, medium/small neurons and nerve fibers. Acute alcohol intoxication activated subpopulations of NOS-positive medium/small neurons and nerve fibers. Moreover, we determined that ethanol-induced changes can be blocked with selective nNOS inhibitor 7-NI.

Downloads

Download data is not yet available.

References

[1] Auta, J., Gatta, E., Davis, J. M., Zhang, H., Pandey, S. C., & Guidotti, A. (2020). Essential role for neuronal nitric oxide synthase in acute ethanol-induced motor impairment. Nitric oxide: biology and chemistry, 100-101, 50-56. https://doi.org/10.1016/j.niox.2020.04.003
[2] Bernstein, H. G., Brisch, R., Ogonlade, V., Heinemann, A., Baumann, B., Arendt, T., ... & Lüth, H. J. (2004). Detection of nitric oxide synthase (NOS) immunoreactive neurons in the human septal area: a matter of method? Journal of chemical neuroanatomy, 27(4), 247-250. https://doi.org/10.1016/j.jchemneu.2004.03.008
[3] Bonassoli, V. T., Milani, H., & de Oliveira, R. M. W. (2011). Ethanol withdrawal activates nitric oxide–producing neurons in anxiety-related brain areas. Alcohol, 45(7), 641-652.
[4] Calabrese, V., Mancuso, C., Calvani, M., Rizzarelli, E., Butterfield, D. A., & Stella, A. M. (2007). Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nature reviews. Neuroscience, 8(10), 766-775. https://doi.org/10.1038/nrn2214
[5] Chandler, L. J., Sutton, G., Norwood, D., Sumners, C., & Crews, F. T. (1997). Chronic ethanol increases N-methyl-D-aspartate-stimulated nitric oxide formation but not receptor density in cultured cortical neurons. Molecular pharmacology, 51(5), 733-740. https://doi.org/10.1124/mol.51.5.733
[6] Chen, G., Reilly, M. T., Kozell, L. B., Hitzemann, R., & Buck, K. J. (2009). Differential activation of limbic circuitry associated with chronic ethanol withdrawal in DBA/2J and C57BL/6J mice. Alcohol (Fayetteville, N.Y.), 43(6), 411-420. https://doi.org/10.1016/j.alcohol.2009.05.003
[7] Chong, P. S., Poon, C. H., Fung, M. L., Guan, L., Steinbusch, H., Chan, Y. S., ... & Lim, L. W. (2019). Distribution of neuronal nitric oxide synthase immunoreactivity in adult male Sprague-Dawley rat brain. Acta histochemica, 121(8), 151437. https://doi.org/10.1016/j.acthis.2019.08.004
[8] Criado, J. R., Steffensen, S. C., & Henriksen, S. J. (1996). Microelectrophoretic application of SCH-23390 into the lateral septal nucleus blocks ethanol-induced suppression of LTP, in vivo, in the adult rodent hippocampus. Brain research, 716(1-2), 192-196. https://doi.org/10.1016/0006-8993(96)00018-2
[9] Cuéllar, B., Fernández, A. P., Lizasoain, I., Moro, M. A., Lorenzo, P., Bentura, M. L., ... & Leza, J. C. (2000). Up-regulation of neuronal NO synthase immunoreactivity in opiate dependence and withdrawal. Psychopharmacology, 148(1), 66-73. https://doi.org/10.1007/s002130050026
[10] Deng, K., Yang, L., Xie, J., Tang, H., Wu, G. S., & Luo, H. R. (2019). Whole-brain mapping of projection from mouse lateral septal nucleus. Biology open, 8(7), bio043554. https://doi.org/10.1242/bio.043554
[11] Finnerty, N., O'Riordan, S. L., Klamer, D., Lowry, J., & Pålsson, E. (2015). Increased brain nitric oxide levels following ethanol administration. Nitric oxide : biology and chemistry, 47, 52-57. https://doi.org/10.1016/j.niox.2015.03.002
[12] Gárate-Pérez, M. F., Méndez, A., Bahamondes, C., Sanhueza, C., Guzmán, F., Reyes-Parada, M., ... & Renard, G. M. (2021). Vasopressin in the lateral septum decreases conditioned place preference to amphetamine and nucleus accumbens dopamine release. Addiction biology, 26(1), e12851. https://doi.org/10.1111/adb.12851
[13] Gonzalez-Zulueta, M., Dawson, V. L., & Dawson, T. M. (2001). Histochemical analysis of nitric oxide synthase by NADPH diaphorase staining. Current protocols in toxicology, 10. https://doi.org/10.1002/0471140856.tx1006s01
[14] Halasy, K., Szőke, B., & Janzsó, G. (2017). Fine structure and synaptology of the nitrergic neurons in medial septum of the rat brain. Acta biologica Hungarica, 68(1), 1-13. https://doi.org/10.1556/018.68.2017.1.1
[15] Jonsson, S., Morud, J., Stomberg, R., Ericson, M., & Söderpalm, B. (2017). Involvement of lateral septum in alcohol's dopamine-elevating effect in the rat. Addiction biology, 22(1), 93-102. https://doi.org/10.1111/adb.12297
[16] Kamii, H., Taoka, N., Minami, M., & Kaneda, K. (2017). Nitric oxide in the medial prefrontal cortex contributes to the acquisition of cocaine place preference and synaptic plasticity in the laterodorsal tegmental nucleus. Neuroscience letters, 660, 39-44. https://doi.org/10.1016/j.neulet.2017.09.015
[17] Koob, G. F., & Volkow, N. D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 35(1), 217-238. https://doi.org/10.1038/npp.2009.110
[18] Koob, G. F., & Volkow, N. D. (2016). Neurobiology of addiction: a neurocircuitry analysis. The lancet. Psychiatry, 3(8), 760-773. https://doi.org/10.1016/S2215-0366(16)00104-8
[19] Maisky, V. A., Mankivska, O. P., Maznychenko, A. V., Vlasenko, O. V., Dovgan', O. V., Schomburg, E. D., & Steffens, H. (2016). NADPH-diaphorase reactivity and Fos-immunoreactivity within the ventral horn of the lumbar spinal cord of cats submitted to acute muscle inflammation induced by injection of carrageenan. Acta histochemica, 118(7), 659-664. https://doi.org/10.1016/j.acthis.2016.09.005
[20] McGlinchey, E. M., & Aston-Jones, G. (2018). Dorsal Hippocampus Drives Context-Induced Cocaine Seeking via Inputs to Lateral Septum. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 43(5), 987-1000. https://doi.org/10.1038/npp.2017.144
[21] Mori, C., & Natsuki, R. (1996). Nihon yakurigaku zasshi. Folia pharmacologica Japonica, 107(4), 197-203. https://doi.org/10.1254/fpj.107.197
[22] Nasif, F. J., Hu, X. T., Ramirez, O. A., & Perez, M. F. (2011). Inhibition of neuronal nitric oxide synthase prevents alterations in medial prefrontal cortex excitability induced by repeated cocaine administration. Psychopharmacology, 218(2), 323-330. https://doi.org/10.1007/s00213-010-2105-3
[23] Paxinos, G., & Watson, C. (2006). The rat brain in stereotaxic coordinates: hard cover edition. Elsevier.
[24] Picón-Pagès, P., Garcia-Buendia, J., & Muñoz, F. J. (2019). Functions and dysfunctions of nitric oxide in brain. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1865(8), 1949-1967.
[25] Pokk, P., & Väli, M. (2002). Effects of nitric oxide synthase inhibitors 7-NI, L-NAME, and L-NOARG in staircase test. Archives of medical research, 33(3), 265-268. https://doi.org/10.1016/s0188-4409(02)00365-x
[26] Pokk, P., Sepp, E., Vassiljev, V., & Väli, M. (2001). The effects of the nitric oxide synthase inhibitor 7-nitroindazole on the behaviour of mice after chronic ethanol administration. Alcohol and alcoholism (Oxford, Oxfordshire), 36(3), 193-198. https://doi.org/10.1093/alcalc/36.3.193
[27] Rodrigo, J., Springall, D. R., Uttenthal, O., Bentura, M. L., Abadia-Molina, F., Riveros-Moreno, V., … & Moncada, S. (1994). Localization of nitric oxide synthase in the adult rat brain. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 345(1312), 175-221.
[28] Ryabinin, A. E., Galvan-Rosas, A., Bachtell, R. K., & Risinger, F. O. (2003). High alcohol/sucrose consumption during dark circadian phase in C57BL/6J mice: involvement of hippocampus, lateral septum and urocortin-positive cells of the Edinger-Westphal nucleus. Psychopharmacology, 165(3), 296-305. https://doi.org/10.1007/s00213-002-1284-y
[29] Situmorang, J. H., Lin, H. H., Lo, H., & Lai, C. C. (2018). Role of neuronal nitric oxide synthase (nNOS) at medulla in tachycardia induced by repeated administration of ethanol in conscious rats. Journal of biomedical science, 25(1), 8. https://doi.org/10.1186/s12929-018-0409-5
[30] Smith, A., Scofield, M. D., Heinsbroek, J. A., Gipson, C. D., Neuhofer, D., Roberts-Wolfe, D. J., … & Kalivas, P. W. (2017). Accumbens nNOS Interneurons Regulate Cocaine Relapse. The Journal of neuroscience : the official journal of the Society for Neuroscience, 37(4), 742-756. https://doi.org/10.1523/JNEUROSCI.2673-16.2016
[31] Thériault, R. K., Leri, F., & Kalisch, B. (2018). The role of neuronal nitric oxide synthase in cocaine place preference and mu opioid receptor expression in the nucleus accumbens. Psychopharmacology, 235(9), 2675-2685. https://doi.org/10.1007/s00213-018-4961-1
[32] Trent, N. L., & Menard, J. L. (2010). The ventral hippocampus and the lateral septum work in tandem to regulate rats' open-arm exploration in the elevated plus-maze. Physiology & behavior, 101(1), 141-152. https://doi.org/10.1016/j.physbeh.2010.04.035
[33] Vilpoux, C., Warnault, V., Pierrefiche, O., Daoust, M., & Naassila, M. (2009). Ethanol-sensitive brain regions in rat and mouse: a cartographic review, using immediate early gene expression. Alcoholism, clinical and experimental research, 33(6), 945-969. https://doi.org/10.1111/j.1530-0277.2009.00916.x
[34] Vincent, S. R., & Kimura, H. (1992). Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience, 46(4), 755-784. https://doi.org/10.1016/0306-4522(92)90184-4
[35] Vitcheva, V., Simeonova, R., Kondeva-Burdina, M., & Mitcheva, M. (2015). Selective Nitric Oxide Synthase Inhibitor 7-Nitroindazole Protects against Cocaine-Induced Oxidative Stress in Rat Brain. Oxidative medicine and cellular longevity, 2015, 157876. https://doi.org/10.1155/2015/157876
[36] Wirtshafter, H. S., & Wilson, M. A. (2020). Differences in reward biased spatial representations in the lateral septum and hippocampus. eLife, 9, e55252. https://doi.org/10.7554/eLife.55252
[37] Wirtshafter, H. S., & Wilson, M. A. (2021). Lateral septum as a nexus for mood, motivation, and movement. Neuroscience and biobehavioral reviews, 126, 544-559. https://doi.org/10.1016/j.neubiorev.2021.03.029
[38] Zima, T., Druga, R., & Stípek, S. (1998). The influence of chronic moderate ethanol administration on NADPH-diaphorase (nitric oxide synthase) activity in rat brain. Alcohol and alcoholism (Oxford, Oxfordshire), 33(4), 341-346. https://doi.org/10.1093/oxfordjournals.alcalc.a008402
Published
2021-09-23
How to Cite
Chaikovska, O. V., Dovhan, O. V., Rokunets, I. L., Nechiporuk, V. M., & Vlasenko, O. V. (2021). Histochemical characteristics of nitrergic neuronal system during acute alcohol intoxication and nNOS blockage in the rat lateral septum. Reports of Vinnytsia National Medical University, 25(3), 369-375. https://doi.org/10.31393/reports-vnmedical-2021-25(3)-03