Comparative characteristics of histological changes in lung tissue in rats of different ages under conditions of hyperhomocysteinemia

Keywords: hyperhomocysteinemia, vascular remodeling, endothelial dysfunction, emphysema, atelectasis, fibroblasts, sclerosis.

Abstract

Annotation. Defeat of the respiratory system is a common phenomenon in today's conditions. Elevated levels of homocysteine (Hz) are one of the predictors of bronchopulmonary pathology. In recent years, there has been an association between its concentration in blood plasma and the risk of developing COPD, bronchial asthma, lung cancer. The pathogenesis of respiratory damage in hyperhomocysteinemia (GHz) is still being studied, but it is known to be the cause of endothelial dysfunction, oxidative stress, endoplasmic reticulum stress, which underlie lung tissue damage. The aim of the study is to establish a comparative characterization of histological changes in the lung tissue of rats of different ages at GHz. The experimental study was performed on 64 white nonlinear male rats. During the experiment, the animals were divided into two groups – control and experimental, each of which is divided into subgroups depending on age – young (1-2 months), mature (6-8 months), old (24-26 months). Simulation of the stable GHz state was achieved by administering to rats the experimental group thiolactone Hz at a dose of 200 mg/kg body weight intragastrically for 60 days. Histological specimens were studied using an SEO CCAN light microscope and photo-documented using a Vision CCD Camera with an image output system from histological specimens. Histological examinations of the lungs of young animals under GHz conditions revealed moderate destructive changes of vessels, bronchi, components of the respiratory department, which were compensatory-adaptive and reversible. Adaptive-compensatory and destructive changes of the organ were found in adult rats at experimental GHz. Older animals develop the most significant destructive-degenerative changes compared with studies of the lungs of groups of young and mature rats. The defining feature for this age group was excessive activation of fibroblasts and the development of perivascular, peribronchial, interstitial sclerosis.

Downloads

Download data is not yet available.

References

[1] Bagriy, M. M., Dibrova, V. A., Popadynets, O. G., & Grishchuk, M. I. (Ed.). (2016). Методики морфологічних досліджень [Methods of morphological research]. Вінниця: Нова Книга – Vinnytsia: New Book.
[2] Chaudhary, D., Sharma, N., & Senapati, S. (2019). Serum homocysteine could be used as a predictive marker for chronic obstructive pulmonary disease: a meta-analysis. Front Public Health, 7, 69. doi: 10.3389/fpubh.2019.00069
[3] Cueto, R., Zhang, L., Shan, H.M., Huang, X., Li, X., Lopez, J., … & Wang, H. (2018). Identification of homocysteine-suppressive mitochondrial ETC complex genes and tissue expression profile-novel hypothesis establishment. Redox Biol., 17, 70-88. doi: 10.1016/j.redox.2018.03.015
[4] Dobrelya, N. V., Boitsova, L. V., & Danova, I. V. (2015). Правова база для проведення етичної експертизи доклінічних досліджень лікарських засобів з використанням лабораторних тварин [Legal basis for ethical examination of preclinical studies of drugs using laboratory animals]. Фармакологія та лікарська токсикологія – Pharmacology and drug toxicology, 2, 95-100.
[5] Dong, Y., Sun, Q., Liu, T., Wang, H., Jiao, K., Xu, J., … & Wang, W. (2016). Nitrative stress participates in endothelial progenitor cell injury in hyperhomocysteinemia. PLoS One, 11(7), e0158672. https://doi/org/10.1371/journal.pone.0158672
[6] Eyring, K. R., Pedersen, B. S., Maclean, K. N., Stabler, S. P., Yang, I. V., & Schwartz, D. A. (2018). Methylene-tetrahydrofolate reductase contributes to allergic airway disease. PLoS ONE, 13(1), e0190916. https://doi.org/10.1371/journal.pon.0190916
[7] Faversani, J. L., Hammerschmidt, T. G., Sitta, A., Deon, M., Wajner, M., & Vargas, C. R. (2017). Oxidative Stress in Homocysteinuria Due to Cystathione β-synthase Deficiency: Findings in Patients and in Animal Model. Cell Mol Neurobiol, 37(8), 1477-1485. doi: 10.1007/s10571-017-0478-0
[8] Goralsky, L. P., Khomich, V. T., & Kononsky, O. I. (2011). Основи гістологічної техніки і морфофункціональні методи досліджень у нормі та при патології [Fundamentals of histological technique and morphofunctional research methods in normal and pathology]. Житомир: Полісся – Zhytomyr: Polissya.
[9] Han, S. H., & Mallampalli, R. K. (2015). The acute respiratory distress syndrome: from mechanism to translation. J Immunol., 194, 855-860. doi: 10.4049/jimmunol.1402513
[10] Harutyunyan, A.V., Pustygina, A.V., Milyutina, Yu.P., Zaloznyaya, I.V., & Kozina, A.S. (2015). Молекулярные маркеры окислительного стресса у потомства при экспериментальной гипергомоцистеинемии [Molecular markers of oxidative stress in offspring with experimental hyperhomocysteinemia]. Молекулярная медицина – Molecular medicine, 5, 41-46.
[11] Hasan, T., Arora, R., Bansal, A. K., Bhattacharya, R., Sharma, G. S., & Singh, L. R. (2019). Disturbed homocysteine metabolism is associated with cancer. Exp Mol Med., 51(2), 1-13. doi: 10.1038/s12276-019-0216-4
[12] Hsu, C. C., Cheng, C. H., Hsu, C. L., Lee, W. J., Huang, S. C., & Huang, Y. C. (2015). Role of vitamin B6 status on antioxidant defenses, glutathione and related enzyme activities in mice with homocysteine-induced oxidative stress. Food Nutr Res., 59, 25702. doi: 10.3402/fnr.v59.25702
[13] Huo, Y., Wu, X., Ding, J., Geng, Y., Qiao, W., Ge, A., … & Fan, W. (2018). Vascular remodeling, oxidative stress and disrupted PPAR γ exspression in rats of long-term hyperhomocysteinemia with metabolic disturbance. PPAR Res., 15, 6738703. doi: 10.1155/2018/6738703
[14] Jacobsen, N. R., Stoeger, T., van de Brule, S., Saber, A. T., Beyerle, A., Vietti, G., … & Moller, P. (2015). Acute and subacute pulmonary toxicity and mortality in mice after intratracheal instillation of ZnO nanoparticles in three laboratories. Food and Chemical Toxicology, 85, 84-95. doi: 10.1016/j.fct.2015.08.008
[15] Kozhemyakin, Yu. M., Khromov, O. S., Boldyreva, N. E., Dobrelya, N. V., & Saifetdinova, G. A. (2017). Науково-практичні рекомендації з утримання лабораторних тварин та роботи з ними [Scientific and practical recommendations for keeping laboratory animals and working with them]. Київ: Інтерсервіс – Kyiv: Interservice.
[16] Lai, W. K., & Kan, M. Y. (2015). Homocysteine-induced endothelial dysfunction. Ann Nutr Metab., 67(1), 1-12. doi: 10.1159/000437098
[17] Medvedev, D. V., & Zvyagina, V. I. (2017). Молекулярные механизмы токсического действия гомоцистеина [Molecular mechanisms of homocysteine toxicity]. Кардиологический вестник – Cardiology bulletin, 1, 52-57.
[18] Medvedev, D. V., Zvyagina, V. I., Uryasyev, O. M., Belskikh, E. S., Butoletsky, S. V., & Ryabkov, A. N. (2017). Метаболические изменения в митохондриях легких при экспериментальной гипергомоцистеинемии у крыс [Metabolic changes in lung mitochondria during experimental hyperhomocysteinemia in rats]. Биомедицинская химия – Biomedical chemistry, 3, 248-254.
[19] Medvedev, D. V., Zvyagina, V. I., & Fomina, M. A. (2014). Способ моделирования тяжелой формы гипергомоцистеинемии у крыс [A method for modeling severe hyperhomocysteinemia in rats]. Российский медико-биологический вестник имени академика И.П. Павлова – Russian medical and biological bulletin named after academician I.P. Pavlova, 4, 42-46.
[20] Stanislawska-Sachadyn, A., Borzyszkowska, J., Krzeminski, M., Janowicz, A., Dziadziuszko, R., Jassem, J., … & Limon, J. (2019). Folate/homocysteine metabolism and lung cancer risk among smokers. PLoS ONE, 14(4), e0214462. https://doi.org/10.1371/journal.pone.0214462
[21] Tolkach, P. G., Basharin, V. A., & Chepur, S. V. (2018). Экспериментальная модель токсического отека легких при ингаляции продуктов пиролиза хлорированного парафина [Experimental model of toxic pulmonary edema upon inhalation of chlorinated paraffin pyrolysis products]. Токсикологический вестник – Toxicology Bulletin, 6(153), 8-11.
[22] Yang, F., Qi, X., Gao, Z., Yang, X., Zheng, X., Duan, C., … & Zheng, J. (2016). Homocysteine injures endothelial cells by inhibiting mitochondrial activity. Exp Ther Med., 12(4), 2247-2252. doi: 10.3892/etm.2016.3564
Published
2021-06-24
How to Cite
Samborska, I. A. (2021). Comparative characteristics of histological changes in lung tissue in rats of different ages under conditions of hyperhomocysteinemia. Reports of Vinnytsia National Medical University, 25(2), 196-200. https://doi.org/10.31393/reports-vnmedical-2021-25(2)-02