Intravaginal use of clindamycin phosphate in therapy of bacterial vaginosis: peculiarities of pharmacokinetics depending on the level of hydrogen sulfide in the organism (literature review)

  • D. I. Grebeniuk
  • I. V. Taran
  • O. A. Nazarchuk
Keywords: bacterial vaginosis; clindamycin phosphate; hydrogen sulfide; pharmacokinetics.


Annotation. The article provides an overview of modern literature data on the problems of bacterial vaginosis, its therapy with clindamycin, the pharmacokinetics of this pharmacological drug, and the potential effect of the background level of hydrogen sulfide in the body on the pharmacokinetics of drugs. From PubMed, ScienceDirect, UpToDate databases, 50 sources were selected that met the conditions of the query: the latest publications (for the last 5 years), or the latest publications on this issue (regardless of age). The wide and diverse influence of endogenous hydrogen sulfide on the course of biochemical and physiological processes in the body prompts the study of its potential modulating effect on the pharmacological properties of drugs. A preclinical study of the pharmacokinetics and pharmacodynamics of drugs (in particular, clindamycin) will further optimize therapeutic regimens taking into account the level of hydrogen sulfide in the body, as well as create the preconditions for the development of new effective pharmaceutical compositions of antibiotics and hydrogen sulfide donors.


1. AHFS Drug Information 2018. McEvoy, G. K. (Ed.). (2018). Clindamycin Hydrochloride, Clindamycin Palmitate Hydrochloride, Clindamycin Phosphate. American Society of Health-System Pharmacists.

2. Bautista, C. T., Wurapa, E., Sateren, W. B., Morris, S., Hollingsworth, B., & Sanchez, J. L. (2016). Bacterial vaginosis: a synthesis of the literature on etiology, prevalence, risk factors, and relationship with chlamydia and gonorrhea infections. Military Medical Research, 3, 4.

3. Bhatia, M., & Gaddam, R. R. (2020). Hydrogen Sulfide in Inflammation: A Novel Mediator and Therapeutic Target. Antioxidants & redox signaling, 10.1089/ars.2020.8211. Advance online publication.

4. Bhatia, M., Wong, F. L., Fu, D., Lau, H. Y., Moochhala, S. M., & Moore, P. K. (2005). Role of hydrogen sulfide in acute pancreatitis and associated lung injury. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 19 (6), 623–625.

5. Borin, M. T., Ryan, K. K., & Hopkins, N. K. (1999). Systemic absorption of clindamycin after intravaginal administration of clindamycin phosphate ovule or cream. Journal of clinical pharmacology, 39 (8), 805–810.

6. Cai, H., & Wang, X. (2020). Effect of sulfur dioxide on vascular biology. Histology and histopathology, 18290. Advance online publication.

7. Ceccarani, C., Foschi, C., Parolin, C., D'Antuono, A., Gaspari, V., Consolandi, C., … & Marangoni, A. (2019). Diversity of vaginal microbiome and metabolome during genital infections. Scientific reports, 9 (1), 14095.

8. Clinical Pharmacology and Biopharmaceutics Review(s): Clindamycin phosphate vaginal suppository (50-767). 1999. Retrieved from

9. Coudray, M. S., & Madhivanan, P. (2020). Bacterial vaginosis – A brief synopsis of the literature. European journal of obstetrics, gynecology, and reproductive biology, 245, 143–148.

10. Cuevasanta, E., Denicola, A., Alvarez, B., & Möller, M. N. (2012). Solubility and permeation of hydrogen sulfide in lipid membranes. PloS one, 7 (4), e34562.

11. Dhawan, V. K., & Thadepalli, H. (1982). Clindamycin: a review of fifteen years of experience. Reviews of infectious diseases, 4 (6), 1133–1153.

12. Du, J., Yan, H., & Tang, C. (2003). Endogenous H2S is involved in the development of spontaneous hypertension. Beijing da xue xue bao. Yi xue ban = Journal of Peking University. Health sciences, 35 (1), 102. Retrieved from

13. Eastment, M. C., & McClelland, R. S. (2018). Vaginal microbiota and susceptibility to HIV. AIDS (London, England), 32 (6), 687–698.

14. Faught, B. M., & Reyes, S. (2019). Characterization and Treatment of Recurrent Bacterial Vaginosis. Journal of women's health, 28 (9), 1218–1226.

15. Faure, K., Dessein, R., Vanderstichele, S., & Subtil, D. (2019). Endométrites du post-partum. RPC infections génitales hautes CNGOF et SPILF [Postpartum endometritis: CNGOF and SPILF Pelvic Inflammatory Diseases Guidelines]. Gynecologie, obstetrique, fertilite & senologie, 47 (5), 442–450.

16. Gadalla, M. M., & Snyder, S. H. (2010). Hydrogen sulfide as a gasotransmitter. Journal of neurochemistry, 113 (1), 14–26.

17. Guengerich F. P. (1992). Characterization of human cytochrome P450 enzymes. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 6 (2), 745–748.

18. Hillier, S. L., Nugent, R. P., Eschenbach, D. A., Krohn, M. A., Gibbs, R. S., Martin, D. H., … & Rao, A. V. (1995). Association between bacterial vaginosis and preterm delivery of a low-birth-weight infant. The Vaginal Infections and Prematurity Study Group. The New England journal of medicine, 333 (26), 1737–1742.

19. Homayouni, A., Bastani, P., Ziyadi, S., Mohammad-Alizadeh-Charandabi, S., Ghalibaf, M., Mortazavian, A. M., & Mehrabany, E. V. (2014). Effects of probiotics on the recurrence of bacterial vaginosis: a review. Journal of lower genital tract disease, 18 (1), 79–86.

20. Jackson, M. R., Melideo, S. L., & Jorns, M. S. (2012). Human sulfide:quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite. Biochemistry, 51 (34), 6804–6815.

21. Javed, A., Parvaiz, F., & Manzoor, S. (2019). Bacterial vaginosis: An insight into the prevalence, alternative treatments regimen and it's associated resistance patterns. Microbial pathogenesis, 127, 21–30.

22. Jayaram, P. M., Mohan, M. K., & Konje, J. (2020). Bacterial vaginosis in pregnancy – a storm in the cup of tea. European journal of obstetrics, gynecology, and reproductive biology, 253, 220–224.

23. Jiang, H. L., Wu, H. C., Li, Z. L., Geng, B., & Tang, C. S. (2005). Changes of the new gaseous transmitter H2S in patients with coronary heart disease. Di Yi Jun Yi Da Xue Xue Bao, = Academic journal of the first medical college of PLA, 25 (8), 951–954.

24. Joesoef, M. R., Hillier, S. L., Wiknjosastro, G., Sumampouw, H., Linnan, M., Norojono, W., … & Utomo, B. (1995). Intravaginal clindamycin treatment for bacterial vaginosis: effects on preterm delivery and low birth weight. American journal of obstetrics and gynecology, 173 (5), 1527–1531.

25. Kahwati, L. C., Clark, R., Berkman, N. D., Urrutia, R., Patel, S. V., Zeng, J., & Viswanathan, M. (2020). Screening for Bacterial Vaginosis in Pregnant Adolescents and Women to Prevent Preterm Delivery: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA, 323 (13), 1293–1309. doi: 10.1001/jama.2020.0233

26. Kenyon, C., Colebunders, R., & Crucitti, T. (2013). The global epidemiology of bacterial vaginosis: a systematic review. American journal of obstetrics and gynecology, 209 (6), 505–523.

27. Kimura, H. (2011). Hydrogen sulfide: its production, release and functions. Amino acids, 41 (1), 113–121.

28. Kimura, H. (2014). Production and physiological effects of hydrogen sulfide. Antioxidants & redox signaling, 20 (5), 783–793.

29. Li, H. M., Sung, F. C., Li, S. C., Huang, Y. K., Chang, Y., Chang, C. C., … & Kao, C. H. (2018). The effect of antibiotic prophylaxis for acute pelvic inflammatory disease after hysterosalpingography: a retrospective cohort study. Current medical research and opinion, 34 (7), 1271–1276.

30. Łowicka, E., & Bełtowski, J. (2007). Hydrogen sulfide (H2S) – the third gas of interest for pharmacologists. Pharmacological reports, 59 (1), 4–24. Retrieved from

31. Mastromarino, P., Hemalatha, R., Barbonetti, A., Cinque, B., Cifone, M. G., Tammaro, F., & Francavilla, F. (2014). Biological control of vaginosis to improve reproductive health. The Indian journal of medical research, 140 (1), S91–S97. Retrieved from

32. McGregor, J. A., French, J. I., & Seo, K. (1991). Adjunctive clindamycin therapy for preterm labor: results of a double-blind, placebo-controlled trial. American journal of obstetrics and gynecology, 165 (4, 1), 867–875.

33. Murphy, P. B., Bistas, K. G., & Le, J. K. (2020). Clindamycin. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. Retrieved from

34. Public Assessment Report: Dalacin Vaginal Ovules (PA0822/119/001). (2018). Retrieved from

35. Reda, S., Gonçalves, F. A., Mazepa, M. M., & De Carvalho, N. S. (2018). Women infected with HIV and the impact of associated sexually transmitted infections. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics, 142 (2), 143–147.

36. Redelinghuys, M. J., Geldenhuys, J., Jung, H., & Kock, M. M. (2020). Bacterial Vaginosis: Current Diagnostic Avenues and Future Opportunities. Frontiers in cellular and infection microbiology, 10, 354.

37. Reiter, S., & Kellogg Spadt, S. (2019). Bacterial vaginosis: a primer for clinicians. Postgraduate medicine, 131 (1), 8–18.

38. Savaris, R. F., Fuhrich, D. G., Maissiat, J., Duarte, R. V., & Ross, J. (2020). Antibiotic therapy for pelvic inflammatory disease. The Cochrane database of systematic reviews, 8, CD010285.

39. Schwarz, S., Shen, J., Kadlec, K., Wang, Y., Brenner Michael, G., Feßler, A. T., & Vester, B. (2016). Lincosamides, Streptogramins, Phenicols, and Pleuromutilins: Mode of Action and Mechanisms of Resistance. Cold Spring Harbor perspectives in medicine, 6 (11), a027037.

40. Shibuya, N., & Kimura, H. (2013). Production of hydrogen sulfide from d-cysteine and its therapeutic potential. Frontiers in endocrinology, 4, 87.

41. Soper D. E. (2020). Bacterial vaginosis and surgical site infections. American journal of obstetrics and gynecology, 222 (3), 219–223.

42. Spížek, J., & Řezanka, T. (2017). Lincosamides: Chemical structure, biosynthesis, mechanism of action, resistance, and applications. Biochemical pharmacology, 133, 20–28.

43. Tomás, M., Palmeira-de-Oliveira, A., Simões, S., Martinez-de-Oliveira, J., & Palmeira-de-Oliveira, R. (2020). Bacterial vaginosis: Standard treatments and alternative strategies. International journal of pharmaceutics, 587, 119659.

44. Tomás, M. S., Claudia Otero, M., Ocaña, V., & Elena Nader-Macías, M. (2004). Production of antimicrobial substances by lactic acid bacteria I: determination of hydrogen peroxide. Methods in molecular biology (Clifton, N.J.), 268, 337–346.

45. Vazquez, F., Fernández-Blázquez, A., & García, B. (2019). Vaginosis. Vaginal microbiota. Vaginosis. Microbiota vaginal. Enfermedades infecciosas y microbiologia clinica, 37 (9), 592–601.

46. von Hattingberg, H. M. (1977). Pharmakokinetik von Lincomycin und Clindamycin. Infection, 5, 29–36.

47. Wang, R. (2002). Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter? FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 16 (13), 1792–1798.

48. Whiteman, M., Le Trionnaire, S., Chopra, M., Fox, B., & Whatmore, J. (2011). Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. Clinical science (London, England: 1979), 121 (11), 459–488.

49. Xiao, Q., Ying, J., Xiang, L., & Zhang, C. (2018). The biologic effect of hydrogen sulfide and its function in various diseases. Medicine, 97 (44), e13065.

50. Zhou, Y., Li, X. H., Zhang, C. C., Wang, M. J., Xue, W. L., Wu, D. D., … & Zhu, Y. C. (2016). Hydrogen sulfide promotes angiogenesis by downregulating miR-640 via the VEGFR2/mTOR pathway. American journal of physiology. Cell physiology, 310 (4), C305–C317.
How to Cite
Grebeniuk, D. I., Taran, I. V., & Nazarchuk, O. A. (2020). Intravaginal use of clindamycin phosphate in therapy of bacterial vaginosis: peculiarities of pharmacokinetics depending on the level of hydrogen sulfide in the organism (literature review). Reports of Vinnytsia National Medical University, 24(4), 726-731.

Most read articles by the same author(s)