Pathogenetic role of oxidative stress in Localized scleroderma


  • Al-Omary Obadeh Mahmoud
Keywords: Localized scleroderma, oxidative stress, cytokines, fibroblasts, collagen.

Abstract

Annotation. Localized scleroderma has a progressive, disabling course and complex pathogenetic mechanisms. It is important to assess the effect of oxidative stress on the content of pro-inflammatory cytokines and the activity of fibrosis. Sources were searched using PubMed and Google Scholar using keywords and abbreviations: Localized scleroderma, pathophysiology, oxidative stress, reactive oxygen species. Search results are processed by methods of survey, system and content analysis. It is set that the basis of the pathogenesis of the disease are three interdependent processes: the defeat of small arterioles and capillaries, immune disorders, excess collagen production by fibroblasts. In Localized scleroderma, there is an increase in the processes of free radical oxidation of lipids with increasing activity of the total oxidative capacity of blood serum. Reactive forms of oxygen (ROS) cause a number of disorders: oxidative damage to DNA, endothelial cells, increased platelet activation with abnormal expression of adhesion molecules and secretion of fibrogenic proinflammatory cytokines. Experimental studies have shown the ability of ROS to enhance the production of TGF-β, collagen and a marker of myofibroblasts – α-SM. The leading role is played by pathological activation of fibroblasts, which leads to the disposition of collagen; inflammation, vasoconstriction and secretion of growth factors develop in parallel. Disorders of collagen formation and the immune system are interrelated at the subcellular and molecular levels. These facts emphasize the relevance of the study of prooxidant and antioxidant systems in localized scleroderma.

References

1. Ata, M. A. (2018). Lechenie ochagovoj sklerodermii s primeneniem sovremennyh metodov [Treatment of focal scleroderma using modern methods]. Dermatologіya ta venerologіya – Dermatology and venereology, 3 (81), 22–24. Vzyato s https://www.elibrary.ru/item.asp?id=36773485

2. Ata, M. A. (2018). Osobennosti aktivnosti elastazy, kollagenoliticheskoj aktivnosti i soderzhaniya glikozaminoglikanov u bol'nyh ogranichennoj sklerodermiej [Features of elastase activity, collagenolytic activity and glycosaminoglycan content in patients with limited scleroderma]. Dermatologіya ta venerologіya – Dermatology and venereology, 4 (82), 23–26. Vzyato s http://nbuv.gov.ua/UJRN/dtv_2018_4_6

3. Ata, M. A. (2019). Prognozirovanie razvitiya immunnoj disfunkcii u bol'nyh ochagovoj sklerodermiej po sostoyaniyu nekotoryh zven'ev immunnogo otveta [Prediction of the development of immune dysfunction in patients with focal scleroderma based on the state of some links of the immune response]. Dermatologіya ta venerologіya – Dermatology and venereology, 1 (83), 14–19. DOI: 10.33743/ 2308-1066-2019-1-14-19

4. Ata, M. A. (2019). Osobennosti biohimicheskih izmenenij u bol'nyh ogranichennoj sklerodermiej [Features of biochemical changes in patients with limited scleroderma]. ScienceRise: Medical Science, 1 (28), 20–24. Vzyato s http://nbuv.gov.ua/UJRN/texcsrm_2019_1_6

5. Dvornikov, A. S. (2013). Rezul'taty issledovaniya sostoyaniya sistemy perekisnogo okisleniya lipidov i antioksidantnoj zashchity u pacientov so sklerodermiej opuhol'-associirovannoj formy [Results of a study of the state of the lipid peroxidation system and antioxidant defense in patients with tumor-associated scleroderma]. Vestnik novyh medicinskih tekhnologij – Herald of new medical technologies, 1. Vzyato s https://cyberleninka.ru/article/n/rezultaty-issledovaniya-sostoyaniya-sistemy-perekisnogo-okisleniya-lipidov-i-antioksidantnoy-zaschity-u-patsientov-so-sklerodermiey

6. Molochkov, V. A., Molochkov, A. V., Kil'dyushevskij, A. V., & Fomina, O. A. (2015). Novyj immunobiologicheskij metod ekstrakorporal'noj fotohimioterapiii ogranichennoj sklerodermii [New immunobiological method of extracorporeal photochemotherapy and limited scleroderma]. Rossijskij zhurnal kozhnyh i venericheskih boleznej –Russian Journal of Skin and Venereal Diseases, 3, 13–16. Vzyato s https://rucont.ru/efd/399783

7. Reznіchenko, N. YU. (2016). Patologіya shkіri pri sistemnih zahvoryuvannyah spoluchnoї tkanini u doroslih ta dіtej: navchal'nij posіbnik [Pathology of shkiri in case of systemic incapacitation of the resulting tissue in older adults and children]. Zaporіzhzhya.

8. Tlish, M. M., & Sorokina, N. V. (2017). Obshchaya antioksidantnaya aktivnost' krovi bol'nyh ogranichennoj sklerodermiej i ee korrekciya [The general antioxidant activity of the blood of patients with limited scleroderma and its correction]. Saratovskij nauchno-medicinskij zhurnal – Saratov Journal of Medical Scientific Research, 13 (3), 640–643. Vzyato s 2015_03-01_410-414.pdf

9. Antoniou, K. M., Trachalaki, A., Tzouvelekis, A., Poletti, V., Vasarmidi, E., Sfikakis, P., & Bouros, D. (2020). A role of antifibrotics in the treatment of Scleroderma-ILD. Pulmonology, 26 (1), 1–2. doi: 10.1016/j.pulmoe.2019.08.004

10. Boehncke, W. H., & Brembilla, N. C. (2019). Autoreactive T-Lymphocytes in Inflammatory Skin Diseases. Front. Immunol., 10, 1198. doi: 10.3389/fimmu.2019.01198

11. Careta, M. F., & Romiti, R. (2015). Localized scleroderma: clinical spectrum and therapeutic update. An. Bras. Dermatol., 90 (1), 62–73. doi: 10.1590/abd1806-4841.20152890

12. Distler, O., & Cozzio, A. (2016). Systemic sclerosis and localized scleroderma: current concepts and novel targets for therapy. Sem. in Immunopathol, 38 (1), 87–95. doi: 10.1007/s00281-015-0551-z

13. Du, A. X., Osman, M., & Gniadecki, R. (2020). Use of Extracorporeal Photopheresis in Scleroderma: A Review. Dermatology, 236 (2), 105–110. doi: 10.1159/000501591

14. Eckes, B., Wang, F., Moinzadeh, P., Hunzelmann, N., & Krieg, T. (2017). Pathophysiological Mechanisms in Sclerosing Skin Diseases. Front Med (Lausanne). 4, 120. doi: 10.3389/fmed.2017.00120

15. Giuggioli, D., Manfredi, A., Lumetti, F., Colaci, M., & Ferri, C. (2018). Scleroderma skin ulcers definition, classification and treatment strategies our experience and review of the literature. Autoimmun Rev., 2, 155–164. doi: 10.1016 / j.autrev.2017.11.020

16. Ikko Kajihara, Masatoshi Jinnin, Noritoshi Honda, Katsunari Makino, Takamitsu Makino, Shinichi Masuguchi, … & Hironobu Ihn (2013). Scleroderma dermal fibroblasts overexpress vascular endothelial growth factor due to autocrine transforming growth factor β signaling. Mod. Rheumatol., 23 (3), 516–524. doi: 10.1007/s10165-012-0698-6

17. Mecoli, C. A., & Casciola-Rosen, L. (2018). An update on autoantibodies in scleroderma. Curr. Opin. Rheumatol., 30 (6), 548–553. doi: 10.1097/BOR.0000000000000550

18. Paola Sambo, Baroni, S. S., Luchetti, M., Paroncini, P., Dusi, S., Orlandini, G., & Gabrielli, A. (2001). Oxidative Stress in Scleroderma Maintenance of Scleroderma Fibroblast Phenotype by the Constitutive Up-Regulation of Reactive Oxygen Species Generation Through the NADPH Oxidase Complex Pathway. Arthritis & rheumatism, 44 (11), 2653–2664. https://doi.org/10.1002/1529-0131(200111)44:11<2653::AID-ART445>3.0.CO;2-1

19. Rodríguez-Salgado, P., & García-Romero, M. T. (2019). Morfea: revisión práctica de su diagnóstico, clasificación y tratamiento. Gac. Med. Mex., 155 (5), 522–531. doi: 10.24875/GMM.18004288

20. Shroff, A., Mamalis, A., & Jagdeo, J. (2014). Oxidative Stress and Skin Fibrosis. Curr. Pathobiol. Rep., 2 (4), 257–267. doi: 10.1007/s40139-014-0062-y

21. Tolkachjov, S. N., Patel, N. G., & Tollefson, M. M. (2015). Progressive hemifacial atrophy: a review. Orphanet. J. Rare Dis., 10, 39. doi: 10.1186/s13023-015-0250-9

22. Torok, K. S., Li, S. C., Jacobe, H. M., Taber, S. F., Stevens, A. M., Zulian, F., & Lu, T.T. (2019). Immunopathogenesis of Pediatric Localized Scleroderma. Front. Immunol., 10, 908. doi: 10.3389/fimmu.2019.00908

23. Tsou, P. S., & Sawalha, A. H. (2017). Unfolding the pathogenesis of scleroderma through genomics and epigenomics. J. Autoimmun., 83, 73–94. doi: 10.1016/j.jaut.2017.05.004

24. van Caam, A., Vonk, M., van den Hoogen, F., van Lent, P., & van der Kraan, P. (2018). Unraveling SSc Pathophysiology. The Myofibroblast. Front. Immunol., 9, 2452. doi: 10.3389/fimmu.2018.02452

25. Wolska-Gawron, K., Bartosińska, J., & Krasowska, D. (2020). MicroRNA in localized scleroderma: a review of literature. Arch. Dermatol. Res., 312 (5), 317–324. doi: 10.1007/s00403-019-01991-0

26. Yamamoto, T. (2011). Autoimmune mechanisms of scleroderma and a role of oxidative stress. Self Nonself., 2 (1), 4–10. doi: 10.4161/self.2.1.14058
Published
2020-12-28
How to Cite
Mahmoud, A.-O. O. (2020). Pathogenetic role of oxidative stress in Localized scleroderma. Reports of Vinnytsia National Medical University, 24(4), 714-719. https://doi.org/https://doi.org/10.31393/reports-vnmedical-2020-24(4)-27