Dynamics of neurospecific enolase as a leading marker in determining the functional state of the blood-brain barrier in patients with metabolic coma

  • M. O. Deyneko
Keywords: metabolic coma, neurospecific enolase, ceruloplasmin, D-fructose-1,6-diphosphate sodium.


Annotation. Determining the pathogenetic mechanism of disturbance of consciousness, coma, at the stage of admission of the patient to the intensive care unit is an important point in determining the features of the algorithm of treatment of such patients. The aim of this study was to determine the mechanisms of the primary cause of loss of consciousness (coma) in the acute period of its course and to assess the effectiveness of pathogenetically sound intensive care since the patient's admission to the clinic. We examined 60 patients with coma of neurotropic metabolic (secondary) origin, who were additionally prescribed substances with antioxidant, vasoprotective and energy-protective effects in the algorithm of intensive care. Mean normal values of neurospecific enolase levels were obtained in 20 volunteers. The functional state of the blood-brain barrier was determined on the 1st, 3rd and 10th day of treatment. Ceruloplasmin solution and D-fructose-1,6-diphosphate sodium salt were found to be pathogenetically significant in determining the effects of treatment in patients with metabolic coma.


1. Agrawal, D., Saini, R., Singh, P., Sinha, S., Gupta, D. K., Satyarthee, G. D., & Misra, M. C. (2016). Bedside computed tomography in traumatic brain injury: experience of 10,000 consecutive cases in neurosurgery at a level 1 trauma center in India. Neurol India, 64 (1), 62–65. doi: 10.4103/0028-3886.173649

2. Chelly, H., Bahloul, М., Ammar, R., Dhouib, A., Mahfoudh, K. B., Boudawara, M. Z., … & Chaari, A. (2019). Clinical characteristics and prognosis of traumatic head injury following road traffic accidents admitted in ICU “analysis of 694 cases”. Eur. J. Trauma Emerg. Surg., 45 (2), 245–253. doi: 10.1007/s00068-017-0885-4

3. Czosnyka, M., Pickard, J., & Steiner, L. (2017). Principles of intracranial pressure monitoring and treatment. Handb. Clin. Neurol., 140, 67–89. doi: 10.1016/B978-0-444-63600-3.00005-2

4. Duclos, C., Dumont, M., Potvin, M., Desautels, A., Gilbert, D., Menon, D. K., … & Gosselin, N. (2016). Evolution of severe sleep-wake cycle disturbances following traumatic brain injury: a case study in both acute and subacute phases post-injury. BMC Neurol., 16 (1), 186. https://doi.org/10.1186/s12883-016-0709-x

5. Ganau, M., Lavinio, A., & Prisco, L. (2018). Delirium and agitation intraumatic brain injury patients: an update on pathological hypotheses and treatment options. Minerva Anestesiol., 84 (5), 632–640. doi: 10.23736/S0375-9393.18.12294-2

6. Godoy, D., Tolosa, K., Lubillo-Montenegro, S., & Murillo-Cabezas, F. (2017). Cooperative sedation: an option for the management of agitation in moderate traumatic brain injury. Med. Intensiva, 41 (3), 193–196. DOI: 10.1016/j.medine.2017.03.002

7. Gultekin, R., Huang, S., Clavisi, O., Pattuwage, L., König, T. C., & Gruen, R. (2016). Pharmacological interventions in traumatic brain injury: Can we rely on systematic reviews for evidence? Injury, 47 (3), 516–524. doi: 10.1016/j.injury.2015.10.011

8. Kuroda, Y. (2016). Neurocritical care update. J. Intensive Care, 4, 36. https://doi.org/10.1186/s40560-016-0141-8

9. Luauté, J., Plantier, D., Wiart, L., & Tell, L. (2016). Care management of the agitation or aggressiveness crisis in patients with TBI. Systematic review of the literature and practice recommendations. Ann. Phys. Rehabil. Med., 59 (1), 58–67. DOI: 10.1016/j.rehab.2015.11.001

10. Mikola, A., Ratsep, I., Sarkela, M., & Lipping, T. (2015). Prediction of outcome in traumatic brain injury patients using long-term qEEG features. Conf. Proc. IEEE Eng. Med. Biol. Soc., 10, 1532–1535. doi: 10.1109/EMBC.2015.7318663

11. Reade, M., Eastwood, G., Bellomo, R., Bailey, M., Bersten, A., Cheung, B., … & Young, P. (2016). Effect of dexmedetomidine added to standard care on ventilator-free time in patients with agitated delirium: a randomized clinical trial. JAMA, 315 (14), 1460–1468. doi: 10.1001/jama.2016.2707

12. Sauvigny, T., Göttsche, J., Czorlich, P., Vettorazzi, E., Westphal, M., & Regelsberger, J. (2017). Intracranial pressure in patients undergoing decompressive craniectomy: new perspective on thresholds. J. Neurosurg., 128 (3), 819–827. doi: 10.3171/2016.11.JNS162263

13. Smuszkiewicz, Р., Wiczling, Р., Ber, J., Warzybok, J., Małkiewicz, T., Matysiak, J., … & Bienert, A. (2017). Pharmacokinetics of dexmedetomidine during analgosedation in ICU patients. J. Pharmacokinet Pharmacodyn., 45 (2), 277–284. doi: 10.1007/s10928-017-9564-7

14. Wu, Y. C., Zhao, Y. B., Lu, C. Z., Qiao, J., & Tan, Y. J. (2004). Correlation between serum level of neuron-specific enolase and long-term functional outcome after acute cerebral infarction: prospective study. Hong Kong Med. J., 10 (4), 251–254. Retrieved from https://pubmed.ncbi.nlm.nih.gov/15299170/

15. Yan, K., Pang, L., Gao, H., Zhang, H., Zhen, Y., & Ruan, S. (2018). The influence of sedation level guided by bispectral index on therapeutic effects for patients with severe traumatic brain injury. World Neurosurg, 1 (10), 671–683. doi: 10.1016/j.wneu.2017.11.079
How to Cite
Deyneko, M. O. (2020). Dynamics of neurospecific enolase as a leading marker in determining the functional state of the blood-brain barrier in patients with metabolic coma. Reports of Vinnytsia National Medical University, 24(4), 670-674. https://doi.org/https://doi.org/10.31393/reports-vnmedical-2020-24(4)-19