Assessment of heart rate variability and adaptive capacity in children with type I diabetes


Keywords: type I diabetes mellitus, children, daily ECG monitoring, heart rate variability, adaptive capabilities.

Abstract

Annotation. Heart damage in type I diabetes in children is an understudied and at the same time dangerous complication. The aim of the study was to examine heart rate variability (HRV) and changes in adaptive capacity in children with type 1 diabetes mellitus (DM) depending on the duration of the disease. 38 children (16 boys and 22 girls) aged 6 to 17 years with type I diabetes were examined. Daily ECG monitoring with HRV analysis using the software and hardware complex “DiaCard-1” and the program “CardioBiorhythm” (JSC Solveig, Kyiv) was performed. Indicators of statistical (time domain) and spectral (frequency domain) analysis were evaluated: Mean, SDNN-i, rMSSD, pNN50, IN, AMо, VLF, LF, HF, LF/HF, activity index of regulatory systems. All children with type I diabetes had a statistically significant decrease in the mean values of Mean, SDNN-i, pNN50 (and in girls rMSSD and SDANN) and increased tension index (Baevsky) and fashion amplitude (AMo). Correlation analysis of all cases (Spearman's rank correlation) revealed a correlation between IN and AMo with the duration of the disease. PARS significantly exceed the limits of physiological values. It is established that the vast majority of patients in both groups are in a state of functional stress of adaptive capacity. With increasing duration of the disease, heart rate increases, parasympathetic and sympathetic influences weaken, the tension of adaptive mechanisms increases, the function of heart rate scattering weakens and the function of rhythm concentration increases, which indicates the transformation of functional autonomic disorders into autonomic. Thus, in children with type I diabetes mellitus, a progressive decrease in heart rate variability, progressive lesion of the parasympathetic link of the VNS, decrease in heart rate dislocation function and increase in rhythm concentration function and functional stress of adaptive mechanisms are determined.

References

1. Baevskij, R. M., Ivanov, G. G., Chirejkin, L. V., Gavrilushkin, A. P., Dovgalevskij P. Ya., Kukushkin A. Ya., ... & Medvedev, M. M. (2001). Analiz variabel`nosti serdechnogo ritma pri ispol`zovanii razlichny`kh e`lektrokardiograficheskikh sistem (metodicheskie rekomendaczii) [Analysis of heart rate variability using various electrocardiographic systems (guidelines)]. Vestnik Aritmologii – Bulletin of Arrhythmology, 24, 65–87. Vzyato s http://www.vestar.ru/atts/1267/24baevsky.pdf

2. Makarov, L. M. (2017). Kholterovskoe monytoryrovanye. (4-e yzd.). [Holter monitoring. (4th ed.)]. Moskva: ID “MEDPRAKTIKA-M”. ISBN 978-5-98803-362-2

3. Agashe, S., & Petak, S. (2018). Cardiac Autonomic Neuropathy in Diabetes Mellitus. Methodist DeBakey Cardiovascular Journal, 14 (4), 251–256. doi: 10.14797/mdcj-14-4-251

4. Athithan, L., Gulsin, G. S., McCann, G. P., & Levelt, E. (2019). Diabetic cardiomyopathy: Pathophysiology, theories and evidence to date. World Journal of Diabetes, 10 (10), 490–510. doi: 10.4239/wjd.v10.i10.490

5. Dedov, I. I., Shestakova, M. V., Peterkova, V. A., Vikulova, O. K., Zheleznyakova, A. V., Isakov, M. А., ... & Shiryaeva, T. Y. (2017). Diabetes mellitus in children and adolescents according to the Federal diabetes registry in the Russian Federation: dynamics of major epidemiological characteristics for 2013–2016. Diabetes mellitus, 20 (6), 392–402. https://doi.org/10.14341/DM9460

6. Gumeniuk, O. L. G. A., Bolotova, N., Averianov, A., & Chernenkov, I. U. (2020). Diabetic cardiovascular autonomic neuropathy in children. European Heart Journal, 41 (2), ehaa946-3200. https://doi.org/10.1093/ehjci/ehaa946.3200

7. Jia, G., Hill, M. A., & Sowers, J. R. (2018). Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circulation research, 122 (4), 624–638. doi: 10.1161/CIRCRESAHA.117.311586

8. Lee, W. S., & Kim, J. (2017). Diabetic cardiomyopathy: where we are and where we are going. The Korean Journal of internal medicine, 32 (3), 404–421. doi: 10.3904/kjim.2016.208

9. Lorenzo-Almorós, A., Tuñón, J., Orejas, M., Cortés, M., Egido, J., & Lorenzo, Ó. (2017). Diagnostic approaches for diabetic cardiomyopathy. Cardiovascular Diabetology, 16 (1), 28. https://doi.org/10.1186/s12933-017-0506-x

10. Marwick, T. H., Ritchie, R., Shaw, J. E., & Kaye, D. (2018). Implications of underlying mechanisms for the recognition and management of diabetic cardiomyopathy. Journal of the American College of Cardiology, 71 (3), 339–351.

11. Murtaza, G., Virk, H. U. H., Khalid, M., Lavie, C. J., Ventura, H., Mukherjee, D., ... & Paul, T. K. (2019). Diabetic cardiomyopathy-A comprehensive updated review. Progress in Cardiovascular Diseases, 62 (4), 315–326. doi: 10.1016/j.pcad.2019.03.003

12. Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., ... & Shaw, J. E. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes research and clinical practice, 157, 107843. doi: 10.1016/j.diabres.2019.107843
Published
2020-10-12
How to Cite
Maidannyk, V. H., Kryvonos, Y. M., Mitiuriaieva, I. O., Terletskyi, R. V., Hnyloskurenko, H. V., Romanenko, S. I., & Klets, T. D. (2020). Assessment of heart rate variability and adaptive capacity in children with type I diabetes. Reports of Vinnytsia National Medical University, 24(3), 398-403. https://doi.org/https://doi.org/10.31393/reports-vnmedical-2020-24(3)-05