Microbiological grounds for antimicrobial treatment of experimental pseudomonal keratitis


  • I.M. Vovk
  • N.V. Kryvetska
  • V.M. Burkot
  • A.O. Dudar
  • A.V. Kulik
Keywords: Pseudomonas aeruginosa, oftaquix, floximed, tobrex, oftalmodec, keratitis.

Abstract

Annotation. In the structure of the corneal microbial diseases bacterial keratitis take second rate position after viral keratitis. They are characterized by a severe course and often leads to complications that require surgical treatment. P. aeruginosa is the main causative agent of keratitis associated with the contact lenses wearing. The aim of our work was to check up the combined action of fluoroquinolones, tobramycin and antiseptic decamethoxine on clinical strains of P. aeruginosa in vitro with microbiological methods. The studies were performed on clinical strains of P. aeruginosa, which were sensitive as well as resistant to the studied antimicrobial compounds. Statistical analysis of the results was performed using standard software packages “STATISTICA +” and “Microsoft Excel 2010”. Calculated the arithmetic mean (Xcr), standard deviation (σ). The results of our investigation demonstrated 2–4 times antimicrobial susceptibility increasing for quinolone and tobramycin resistant clinical strains of Pseudomonas aeruginosa in the presence of subinhibitory concentrations of decamethoxine. Oftaquix, floximed and tobrex eye drops contain enough amount of antibiotics that is capable to affect both sensitive and resistant strains of P. aeruginosa in vitro. The revealed synergetic antipseudomonal action gives us grounds for further research of the combination etiotropic therapy effect on the course of the experimental keratitis caused by P. aeruginosa.

References

1. Vyznachennia chutlyvosti mikroorhanizmiv do antybakterialnykh preparative: metodychni vkazivky (2007). [Detection of microbial susceptibility to antimicrobials: Guidelines]. MV 9.9.5-143. Kyiv.

2. Efimova, Yu. V., & Vitovskaya, O. P. (2015). Effektivnost primeneniya ftorhinolonov v lechenii keratitov [Efficacy of quinolones for keratitis treatment]. Arhiv oftalmologii Ukrainy – Archive of Ophthalmology Ukraine, 3 (2), 65–69.

3. Nazarchuk, O. A., Chereshniuk, I. L., Nazarchuk, H. H., & Palii, D. V. (2010). Vyvchennia antymikrobnoi aktyvnosti suchasnykh antyseptykiv ta yikh toksychnoho vplyvu na epitelii rohivky [Current antiseptics: a study on their antimicrobial activity and toxic effects on the corneal epithelium]. Oftalmolohichnyi zhurnal – Journal of Ophthalmology, 6, 26–31. http://doi.org/10.31288/oftalmolzh201932631.

4. Austin, A., Lietman, T., & Rose-Nussbaumer, J. (2017). Update on the Management of Infectious Keratitis. Ophthalmology, 124 (11), 1678–1689. doi: 10.1016/j.ophtha.2017.05.012.

5. Breakpoint tables for interpretation of MICs and zone diameters Version 10.0 (2020). EUCAST-2020. https://www.eucast.org/clinical_breakpoints_and_dosing/about_clinical_breakpoints/.

6. Green, M., Apel, A., & Stapleton, F. (2008). Risk factors and causative organisms in microbial keratitis. Cornea, 27 (1), 22–27. doi: 10.1097/ICO.0b013e318156caf2.

7. Jin, H., Parker, W. T., Law, N. W., Clarke, C. L., Gissman, J. D., Pflugfelder, S. C., … Al-Mohtaseb, Z. N. (2017). Evolving risk factors and antibiotic sensitivity patterns for microbial keratitis at a large county hospital. The British Jornal of Ophthalmology, 101 (11), 1483–1487. DOI: 10.1136/bjophthalmol-2016-310026.

8. Tacconelli, E., Carrara, E., Savoldi, A., Kattula, D., & Burkert, F. (2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics World Health Organization. Retrieved from https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf.

9. Truong, D. T., Bui, M-T., Memon, P., & Dwight Cavanagh, H. (2015). Microbial Keratitis at an Urban Public Hospital: A 10-Year Update. Jornal of Clinical and Expiremental Ophthalmology, 6 (6), 498. doi: 10.4172/2155-9570.1000498.

10. Zimmerman, A. B., Nixon, A. D., & Rueff, E. M. (2016). Contact lens associated microbial keratitis: practical considerations for the optometrist. Clinical Optometry, 8, 1–12. doi: 10.2147/OPTO.S66424.
Published
2020-05-18
How to Cite
Vovk, I., Kryvetska, N., Burkot, V., Dudar, A., & Kulik, A. (2020). Microbiological grounds for antimicrobial treatment of experimental pseudomonal keratitis. Reports of Vinnytsia National Medical University, 24(1), 114-117. https://doi.org/https://doi.org/10.31393/reports-vnmedical-2020-24(1)-21

Most read articles by the same author(s)

1 2 > >>