Anti-microbial activity of heterocyclic cationic surface-active substances


Keywords: cetylpyridinium, heterocyclic cationic surfactants, antimicrobial activity, conditionally pathogenic microorganisms.

Abstract

Annotation. The development and rapid pace of the spread of resistance to antimicrobial agents predetermines the search for new methods of counteracting pathogenic and conditionally pathogenic microorganisms. In this context, studies of the antimicrobial activity of newly synthesized chemicals, which in the future can be considered as candidates for antiseptic and disinfectants, are relevant. The aim of the work was to determine the antimicrobial activity of new ionic associates based on the surface-active cetylpyridinium cation with respect to certain opportunistic microorganisms. The antimicrobial activity of four ionic associates based on the cetylpyridinium cation with respect to clinical isolates of E. coli, P. vulgaris, K. pneumonia, P. aeruginosa, S. aureus, as well as the collection test strains of S. aureus ATCC 25923, E. coli ATCC 29522 and P. aeruginosa ATCC 27853 was studied. Screening studies were performed by the disk diffusion method. With substances that showed an antimicrobial effect, quantitative studies were carried out by the method of serial macro-dilutions in a liquid nutrient media. Screening studies revealed the antibacterial activity of the substances against E. coli ATCC 25923, E. coli (clinical isolate), P. vulgaris and K. pneumonia. With these microorganisms quantitative studies were carried out with the determination of the minimum inhibitory and minimum bactericidal concentrations. The most pronounced antimicrobial activity for the investigated microflora was shown by tetraphenylborate and cetylpyridinium perchlorate. The MIC and MBC values of these substances ranged between 1.625–3.125 mmol / L and 3.125–12.5 mmol / L, respectively. The studied associates showed high antimicrobial activity against representatives of the Enterobacteriaceae family in in vitro studies. Promising is the further study of the effect of the counter-anion associates of cationic surfactants on the biofilm formation of conditionally pathogenic microorganisms.

References

1. Bondar, M. V., Pylypenko, M. M., Svintukovskyi, M. Yu., Kharchenko, L. A., Prevysla, O. M., & Tsvyk, I. M. (2016). Antybiotykorezystentnist mikroorhanizmiv: mekhanizmy rozvytku y shliakhy zapobihannia. [Antibiotic resistance of microorganisms: mechanisms of development and ways of prevention]. Medicina neotlozhnyh sostoyanij – Emergency medicine, 3, 11–17. Vziato z http://nbuv.gov.ua/UJRN/Medns_2016_3_3.

2. Holubnycha, V. M., Trofymenko, Ya. V., Kalinkevych, O. V., Korniienko, V. V., & Skliar, A. M. (2016). Antybakterialna diia kompleksnykh preparativ na osnovi khitozanu ta nanochastynok midi [Antibacterial action of complex preparations based on chitosan and copper nanoparticles]. Biomedical and biosocial anthropology, 26, 74–76.

3. Telychka, V.C., Fizer, O.I., Fizer, M.M., Rusyn, I.F., Lendiel, V.H. (2019). Teoretychne doslidzhennia delokalizatsii zariadu u chetvertynnykh amoniievykh kationakh na prykladi tsetylpirydyniiu [Theoretical investigation of charge delocalization in quaternary ammonium cations in the case of cetylpyridinium]. Naukovyi visnyk Uzhhorodskoho universytetu (Seriia Khimiia) – Scientific Bulletin of Uzhhorod University (Chemistry Series), 1, 76–80. Vziato z http://nbuv.gov.ua/UJRN/Nvuuchem_2019_1_14. 41(1), 76-80.

4. Fizer, O. I., & Studeniak, Ya. I. (2014). Povedinka PVKh-modyfikovanykh membrannykh sensoriv u rozchynakh poverkhnevo-aktyvnykh rechovyn [The behavior of PVC-modified membrane sensors in surfactants solutions]. Naukovyi visnyk Uzhhorodskoho universytetu (Seriia Khimiia) – Scientific Bulletin of Uzhhorod University (Chemistry Series), 1, 43–48. Vziato z http://nbuv.gov.ua/UJRN/Nvuuchem_2014_1_12.

5. Fizer, O.I., Studeniak, Ya.I. (2015) Potentsiometrychne tytruvannia anionnykh poverkhnevo-aktyvnykh rechovyn u pobutovykh obiektakh [Potentiometric titration of anionic surfactants in household object]. Naukovyi visnyk Uzhhorodskoho universytetu (Seriia Khimiia) – Scientific Bulletin of Uzhhorod University (Chemistry Series), 2, 55–58. Vziato z http://nbuv.gov.ua/UJRN/Nvuuchem_2015_2_15.

6. Antimicrobial resistance. World Health Organisation (Media centre). (2016). Retrieved from http://www.who.int/ mediacentre/factsheets/fs194/en/.

7. Baptista, P. C. S., Araújo, A. N., & Montenegro, M. C. B. S. M. (2003). Determinação potenciométrica em fluxo de cloreto de cetilpiridinio em desinfectantes bucais. Quimica Nova, 26 (4), 475–478. DOI: 10.1590/S0100-40422003000400005.

8. Bassegoda, A., Ivanova, K., Ramon, E., & Tzanov, T. (2018). Strategies to prevent the occurrence of resistance against antibiotics by using advanced materials. Applied microbiology and biotechnology, 102 (5), 2075–2089. doi: 10.1007/s00253-018-8776-0.

9. Fizer, M., Fizer, O., Sidey, V., Mariychuk, R., & Studenyak, Ya. (2019). Experimental and theoretical study on cetylpyridinium dipicrylamide – A promising ion-exchanger for cetylpyridinium selective electrodes, Journal of Molecular Structure, 1187, 77–85. DOI: 10.1016/j.molstruc.2019.03.067.

10. Goga, S. T., Mchedlov-Petrossyan, N. O., Glazkova, E. N., & Lebed, A. V. (2013). Thermodynamics of solubility and solvation of N-cetylpyridinium perchlorate and related compounds in water-propanol-2 system. Journal of Molecular Liquids, 177, 237–242. DOI: 10.1016/j.molliq.2012.11.004.

11. Kapoor, G., Saigal, S., & Elongavan, A. (2017). Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of anaesthesiology, clinical pharmacology, 33 (3), 300. doi: 10.4103/joacp.JOACP_349_15.

12. Mohamed, G. G., Ali, T. A., El-Shahat, M. F., Al-Sabagh, A. M., Migahed, M. A., & Khaled, E. (2010). Potentiometric determination of cetylpyridinium chloride using a new type of screen-printed ion selective electrodes. Analytica Chimica Acta, 673 (1), 79–87. DOI: 10.1016/j.aca.2010.05.016.

13. Paley, O. (2014). Cetylpyridinium chloride. Synlett, 25 (4), 599–600. DOI: 10.1055/s-0033-1340488.

14. Pantyo, V. V., Koval, G. M., & Pantyo, V. I. (2016). Вплив низькоінтенсивного лазерного випромінювання на антибіотикочутливість мікроорганізмів-збудників гнійно-запальних захворювань. Biomedical and Biosocial Anthropology, 26, 33–37.

15. Salmanov, A. G. Antimicrobial resistance and health-care-associated infections in Ukraine Epidemiological report of the multicenter study (2010-2014). Kyiv: Agrar Media Group.

16. Slivka, M., Korol, N., Pantyo, V., Baumer, V., & Lendel, V. (2017). Regio-and stereoselective synthesis of [1, 3] thiazolo [3, 2-b][1, 2, 4] triazol-7-ium salts via electrophilic heterocyclization of 3-S-propargylthio-4Н-1, 2, 4-triazoles and their antimicrobial activity. Heterocyclic Communications, 23 (2), 109–113. DOI: https://doi.org/10.1515/hc-2016-0233.

17. Soemo, A. R., & Pemberton, J. E. (2014). Combined quenching mechanism of anthracene fluorescence by cetylpyridinium chloride in sodium dodecyl sulfate micelles. Journal of Fluorescence, 24 (2), 295–299. DOI: 10.1007/s10895-013-1319-2.
Published
2020-05-18
How to Cite
Pantyo, V. V., Fizer, M. M., Fizer, O. I., Koval, G. M., & Danko, E. (2020). Anti-microbial activity of heterocyclic cationic surface-active substances. Reports of Vinnytsia National Medical University, 24(1), 36-40. https://doi.org/https://doi.org/10.31393/reports-vnmedical-2020-24(1)-07