Comparative characteristics antimicrobial activity of different classes of antibiotics and antimicrobial isolates on Staphylococcus aureus

Keywords: antistaphylococcal activity, antibiotics, protargol, phytopreparations, bacteriophages.

Abstract

Annotation. S. aureus is a leading cause of nosocomial infections in health care facilities. The aim of the study was to determine the effectiveness of the use of staphylococcal bacteriophage, phytopreparation “Chlorophyllipt”, of the drug “Protargol”, compared with antimicrobial chemotherapeutic drugs (ACD) against isolates of Staphylococcus aureus in vitro. Used clinical strains of S. aureus, isolated from 20 patients, aged 19 to 25 years. The susceptibility of microorganisms to ACD was determined on the MPA medium by disk-diffusion method. Staphylococcal bacteriophage sensitivity scores were evaluated by drainage lysis of bacterial indicator culture and negative phage colonies. Anti-staphylococcal activity of phytopreparation and protargol solution was determined by diffusion in agar with the isolates tested. Statistical data processing was performed using Microsoft Excel 2013. In determining the susceptibility of S. aureus isolates to ACD, 30% of penicillin-sensitive strains were detected. Amoxicillin sensitivity was 25% of strains. The rate of detected sensitivity of microorganisms to amoxiclav was 45% of strains. Sensitivity to cephalosporins I-II generation amounted to 75% cephalexin, cefazolin, cefuroxime — 90%. For cephalosporins of the third generation — from 70% to 95%; to macrolides: to clarithromycin — 80%, to erythromycin, azithromycin — 50%, 55% respectively. High sensitivity was reported for lincomycin — 80%. The studied strains showed absolute sensitivity to amikacin (100%). 95% strains were sensitive to gentamicin. Not exceed 60–65% sensitivity to tetracyclines and fluoroquinolones. All bacterial isolates were sensitive to bacteriophage. High antimicrobial activity in up to chlorophyllipt was detected in up to 8 test strains. 19 strains have had low-sensitivity to protargol. The results obtained indicate the feasibility of bacteriophages in the medical practice and the continuation of microbiological studies with the study of antimicrobial activity of herbal drugs.

Downloads

Download data is not yet available.

References

1. Golovkin, D. N., Sharova, O. V., & Kurkina, A. V. (2017). Koncepcii fitoterapii v praktike vracha-pediatra [Phytotherapy concepts in the practice of a pediatrician]. Sovremennye problemy nauki i obrazovaniya. Elektronnyj nauchnyj zhurnal – Modern problems of science and education. Electronic scientific journal, 5. Vzyato z http://www.science-education.ru/ru/article/view?id=27083.
2. Menshikova, V. V. (Red) (2003). Klinicheskaya laboratornaya analitika. (T. IV) [Clinical Laboratory Analytics. (V.IV)]. Мoskva: Agat-Med.
3. MOZ Ukrainy Holovne sanitarno-epidemiolohichne upravliannia. Derzhavni sanitarni pravyla ta normy, hihiienichni normatyvy. 9. Epidemiolohiia. 9.5. Stan zdorovia naselennia u zviazku z vplyvom mikrobiolohichnoho faktora “Pravyla vlashtuvannia i bezpeky roboty v laboratorii mikrobiolohichnoho profilia” [“Rules of arrangement and safety of work in the laboratory of microbiological profile”] Derzhavni sanitarni pravyla DSP 9.9.5.-080-02 (2002). Kyiv.
4. Osypenko, N. I., Riabushko, V. I., & Zakharova, S. L. (2012). Zastosuvannia novoho antyseptychnoho zasobu na osnovi nanoklasternoho sribla ta biopolimeriv morskykh vodorostei dlia obrobky tekstylnykh materialiv [Application of a new antiseptic agent based on nanocluster silver and seaweed biopolymers for textile processing]. Tovaroznavstvo ta innovatsii – Commodity Science and Innovation, 4, 297–302.
5. Ostapenko, V. M. (2007). Mikrobiolohichne obhruntuvannia pryntsypu stvorennia kompleksnykh antymikrobnykh preparativ z uperedzhuvalnymy vlastyvostiamy shchodo formuvannia antybiotykorezystentnosti (Dys. kand. med. nauk). Microbiological substantiation of the principle of creation of complex antimicrobials with pre-emptive properties for the formation of antibiotic resistance (Dis. k. med. scie.)]. AMN Ukrainy. Instytut Mikrobiolohii ta Imunolohii im. I.I. Mechnykova, Kharkiv.
6. Azam, A. H., & Tanji, Y. Appl Microbiol Biotechnol. (2019). Peculiarities of Staphylococcus aureus phages and their possible application in phage therapy. Applied Microbiology and Biotechnology, 103(11), 4279–4289. DOI: 10.1007/s00253-019-09810-2.
7. Cafini, F., Thi Le Thuy, N., Román, F., Prieto, J., Dubrac, S., Msadek, T., & Morikawa, K. (2017). Methodology for the Study of Horizontal Gene Transfer in Staphylococcus aureus. Journal of Visualized Experiments, 121, 587–592. DOI: 10.3791/55087.
8. Doffkay, Z., Dömötör, D., Kovács, T., & Rákhely, G. (2015). Bacteriophage therapy against plant, animal and human pathogens. Acta Biologica Szegediensis, 59 (2), 291–302.
9. Dubey, G. P., Malli Mohan, G. B., Dubrovsky, A., Amen, T., Tsipshtein, S., Rouvinski, A., & Ben-Yehuda, S. (2016). Architecture and Characteristics of Bacterial Nanotubes. Dev cell, 36 (4), 453–461. DOI: 10.1016/j.devcel.2016.01.013.
10. Grunenwald, C. M., Bennett, M. R., & Skaar, E. P. (2018). Nonconventional Therapeutics against Staphylococcus aureus. Microbiology Spectrum, 6, 201–204. DOI: 10.1128/microbiolspec.GPP3-0047–2018.
11. Klem, J., Dömötör, D., Schneider, G., Kovács, T., Tóth, A., & Rákhely, G. (2013). Bacteriophage therapy against staphylococci. Acta Microbiologica et Immunologica Hungarica, 60 (4), 411–422. DOI: 10.1556.
Published
2020-02-28
How to Cite
Burova, L., Korniychuk, O., Pavliy, S., & Mazepa, Y. (2020). Comparative characteristics antimicrobial activity of different classes of antibiotics and antimicrobial isolates on Staphylococcus aureus. Reports of Vinnytsia National Medical University, 24(1), 12-16. https://doi.org/10.31393/reports-vnmedical-2020-24(1)-02