Clinical-morphological study of lung diseases in basic treatment with the use of antioxidants of different origin and without

  • T.M. Korol National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • K.M. Ahafonov National Pirogov Memorial Medical University, Vinnytsya, Ukraine
Keywords: reactive oxygen species, antioxidants, acute lung injury.


Annotation. The purpose of the work is to analyze contemporary views on the morphological changes of lung tissue in inflammatory disease in the clinical and experimental conditions and results of correction by using the antioxidants. The analysis is based in a review if foreign articles for 2014-2019, using the scientometric databases PubMed, Web of Science and Google Scholar. According to the latest data from WHO and WORLD HEALTH RANKINGS 5-year mortality rate of such disease as COPD typically ranges from 40% to 70%, depending on disease severity, while the 2-year mortality rate for people with severe COPD is about 50%. We know that almost 90% of COPD deaths occur in low- and middle-income countries such as Ukraine. Thereby mortality rate from lung tissue diseases in Ukraine is 11.11%. These diseases often accompanied by inflammation and oxidative stress. The last can cause mitochondrial dysfunction, dynamic changes and mitophagy impairment, which leads to increase the number of superoxide anions, hydrogen peroxide etc., inflammatory responses and cellular senescence. They all play important roles in the pathogenesis of chronic lung diseases, such as chronic obstructive pulmonary disease, pulmonary fibrosis and bronchopulmonary dysplasia. Many studies in vitro approved the role of antioxidants in the decreasing of the degree of morphological changes: inflammatory cells infiltration and alveolar edema, permeability and inflammation. In vivo disease development is mainly related to the many conditions, but closely to its severity and possible of combination with other diseases. Thereby treatment of such diseases by using e.g. leaves extract of different herbs can be prescribe to ameliorate the level of reactive oxygen species and decrease the possible cell injure made by anti-inflammatory medicines.


1. Ahmad, T., Sundar, I. K., Lerner, C. A., Gerloff, J., Tormos, A. M., Yao, H., & Rahman, I. (2015). Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: implications for chronic obstructive pulmonary disease. The FASEB Journal, 29(7), 2912–2929. doi:10.1096/fj.14-268276.

2. Al-Harbi, N. O., Imam, F., Nadeem, A., Al-Harbi, M. M., Korashy, H. M., Sayed-Ahmed, M. M., … Bahashwan, S. (2015). Riboflavin attenuates lipopolysaccharide–induced lung injury in rats. Toxicology mechanisms and methods, 25(5), 417–423. doi:10.3109/15376516.2015.1045662.

3. Andreeva, T. I., & Krasovsky, K. S. (2016). COPD Morbidity and Mortality in Ukraine after Tobacco Control Policies Implementation. Chronic Obstructive Pulmonary Diseases, 1, 3. doi: 10.21767/2572-5548.100003.

4. Berg, K., & Wright, J. L. (2016). The pathology of chronic obstructive pulmonary disease: progress in the 20th and 21st centuries. Archives of pathology & laboratory medicine, 140(12), 1423–1428. DOI:10.5858/arpa.2015-0455-RS.

5. Bueno, M., Lai, Y. C., Romero, Y., Brands, J., Croix, C. M. S., Kamga, C., … Mora, A. L. (2015). PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. The Journal of clinical investigation, 125(2), 521–538. doi:10.1172/JCI74942.

6. Choi, S. H., Hong, Z. Y., Nam, J. K., Lee, H. J., Jang, J., Yoo, R. J., … Ji, Y. H. (2015). A hypoxia-induced vascular endothelial-to-mesenchymal transition in development of radiation-induced pulmonary fibrosis. Clinical Cancer Research, 21(16), 3716–3726. doi: 10.1158/1078–0432.

7. Divya, T., Dineshbabu, V., Soumyakrishnan, S., Sureshkumar, A., & Sudhandiran, G. (2016). Celastrol enhances Nrf2 mediated antioxidant enzymes and exhibits anti-fibrotic effect through regulation of collagen production against bleomycin-induced pulmonary fibrosis. Chemico-biological interactions, 246, 52–62. doi:10.1016/j.cbi.2016.01.006.

8. Finkel, T., Menazza, S., Holmström, K. M., Parks, R. J., Liu, J., Sun, J., … Murphy, E. (2015). The ins and outs of mitochondrial calcium. Circulation research, 116 (11), 1810–1819. doi:10.1161/CIRCRESAHA.116.305484.

9. Friedman, J. R., & Nunnari, J. (2014). Mitochondrial form and function. Nature, 505(7483), 335–343. doi:10.1038/nature12985.

10. Hayes, M., Masterson, C., Devaney, J., Barry, F., Elliman, S., O’Brien, T., … Laffey, J. G. (2015). Therapeutic efficacy of human mesenchymal stromal cells in the repair of established ventilator-induced lung injury in the rat. Anesthesiology: The Journal of the American Society of Anesthesiologists, 122(2), 363–373. doi:10.1097/ALN.0000000000000545.

11. Husari, A., Hashem, Y., Bitar, H., Dbaibo, G., Zaatari, G., & El Sabban, M. (2016). Antioxidant activity of pomegranate juice reduces emphysematous changes and injury secondary to cigarette smoke in an animal model and human alveolar cells. International journal of chronic obstructive pulmonary disease, 11, 227. doi: 10.2147/COPD.S97027.

12. Ito, S., Araya, J., Kurita, Y., Kobayashi, K., Takasaka, N., Yoshida, M., .... Kojima, J. (2015). PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. Autophagy, 11(3), 547–559. doi:10.1080/15548627.2015.1017190.

13. Katz, A., Hernández, A., Caballero, D. M. R., Briceno, J. F. B., Amezquita, L. V. R., Kosterina, N., … Westerblad, H. (2014). Effects of N-acetylcysteine on isolated mouse skeletal muscle: contractile properties, temperature dependence, and metabolism. Pflügers Archiv-European Journal of Physiology, 466(3), 577–585. doi:10.1007/s00424-013-1331-z.

14. Khazri, O., Charradi, K., Limam, F., El May, M. V., & Aouani, E. (2016). Grape seed and skin extract protects against bleomycin-induced oxidative stress in rat lung. Biomedicine & Pharmacotherapy, 81, 242–249. doi:10.1016/j.biopha.2016.04.004.

15. Kikuchi, N., Ishii, Y., Morishima, Y., Yageta, Y., Haraguchi, N., Itoh, K., … Hizawa, N. (2010). Nrf2 protects against pulmonary fibrosis by regulating the lung oxidant level and Th1/Th2 balance. Respiratory research, 11(1), 31. doi:10.1186/1465–9921–11–31.

16. Li, G., Yuzhen, L., Yi, C., Xiaoxiang, C., Wei, Z., Changqing, Z., & Shuang, Y. (2015). DNaseI protects against Paraquat-induced acute lung injury and pulmonary fibrosis mediated by mitochondrial DNA. BioMed research international, 2015. doi:10.1155/2015/386952.

17. Liu, Y., & Zheng, Y. (2017). Bach1 siRNA attenuates bleomycin-induced pulmonary fibrosis by modulating oxidative stress in mice. International journal of molecular medicine, 39(1), 91–100. doi:10.3892/ijmm.2016.2823.

18. Liu, Y., Lu, F., Kang, L., Wang, Z., & Wang, Y. (2017). Pirfenidone attenuates bleomycin-induced pulmonary fibrosis in mice by regulating Nrf2/Bach1 equilibrium. BMC pulmonary medicine, 17(1), 63. doi 10.1186/s12890–017–0405–7.

19. Luo, C., Yuan, D., Zhao, W., Chen, H., Luo, G., Su, G., & Hei, Z. (2015). Sevoflurane ameliorates intestinal ischemia-reperfusion-induced lung injury by inhibiting the synergistic action between mast cell activation and oxidative stress. Molecular medicine reports, 12(1), 1082–1090. doi:10.3892/mmr.2015.3527.

20. Mizumura, K., Cloonan, S. M., Nakahira, K., Bhashyam, A. R., Cervo, M., Kitada, T., ... Hashimoto, S. (2014). Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. The Journal of clinical investigation, 124(9), 3987–4003. doi:10.1172/JCI74985.

21. Negmadjanov, U., Godic, Z., Rizvi, F., Emelyanova, L., Ross, G., Richards, J., … Jahangir, A. (2015). TGF-β1-mediated differentiation of fibroblasts is associated with increased mitochondrial content and cellular respiration. PloS one, 10(4), e0123046. doi:10.1371/journal.pone.0123046.

22. Nickols, J., Obiako, B., Ramila, K. C., Putinta, K., Schilling, S., & Sayner, S. L. (2015). Lipopolysaccharide-induced pulmonary endothelial barrier disruption and lung edema: critical role for bicarbonate stimulation of AC10. American Journal of Physiology-Lung Cellular and Molecular Physiology, 309(12), L1430–L1437. doi:10.1152/ajplung.00067.2015.

23. Papaiahgari, S., Yerrapureddy, A., Reddy, S. R., Reddy, N. M., Dodd-O, J. M., Crow, M. T., … Reddy S. P. (2007). Genetic and pharmacologic evidence links oxidative stress to ventilator-induced lung injury in mice. American journal of respiratory and critical care medicine, 176(12), 1222–1235. doi:10.1164/rccm.200701–060OC.

24. Patel, A. S., Song, J. W., Chu, S. G., Mizumura, K., Osorio, J. C., Shi, Y., … Morse, D. (2015). Epithelial cell mitochondrial dysfunction and PINK1 are induced by transforming growth factor-beta1 in pulmonary fibrosis. PloS one, 10(3), e0121246. doi:10.1371/journal.pone.0121246.

25. Pinho-Ribeiro, V., Melo, A. C., Kennedy-Feitosa, E., Graca-Reis, A., Barroso, M. V., Cattani-Cavalieri, I., … Lanzetti, M. (2017). Atorvastatin and simvastatin promoted mouse lung repair after cigarette smoke-induced emphysema. Inflammation, 40(3), 965–979. doi: 10.1007/s107.

26. Santos-Silva, M. A., Pires, K. M. P., Trajano, E. T. L., Martins, V., Nesi, R. T., Benjamin, C. F., ... Porto, L. C. (2012). Redox imbalance and pulmonary function in bleomycin-induced fibrosis in C57BL/6, DBA/2, and BALB/c mice. Toxicologic pathology, 40(5), 731–741. doi:10.1177/0192623312441404.

27. Sosulski, M. L., Gongora, R., Danchuk, S., Dong, C., Luo, F., & Sanchez, C. G. (2015). Deregulation of selective autophagy during aging and pulmonary fibrosis: the role of TGF β1. Aging cell, 14(5), 774–783. doi:10.1111/acel.12357.

28. Suzuki, T., Tada, Y., Gladson, S., Nishimura, R., Shimomura, I., Karasawa, S., … West, J. (2017). Vildagliptin ameliorates pulmonary fibrosis in lipopolysaccharide–induced lung injury by inhibiting endothelial-to-mesenchymal transition. Respiratory research, 18(1), 177. doi:10.1186/s12931–017–0660–4.

29. Tahir, I., Khan, M. R., Shah, N. A., & Aftab, M. (2016). Evaluation of phytochemicals, antioxidant activity and amelioration of pulmonary fibrosis with Phyllanthus emblica leaves. BMC complementary and alternative medicine, 16(1), 406. doi:10.1186/s12906–016–1387–3.

30. Tao, S., De La Vega, M. R., Quijada, H., Wondrak, G. T., Wang, T., Garcia, J. G., & Zhang, D. D. (2016). Bixin protects mice against ventilation-induced lung injury in an NRF2-dependent manner. Scientific reports, 6, 18760. doi:10.1038/srep18760.

31. Wang, X., An, X., Wang, X., Bao, C., Li, J., Yang, D., & Bai, C. (2018). Curcumin ameliorated ventilator-induced lung injury in rats. Biomedicine & Pharmacotherapy, 98, 754–761. doi:10.1016/j.biopha.2017.12.100.

32. World Health Organization (2019). WHO burden of Chronic Obstruct Pulmonary Disease.

33. Yao, H. W., & Li, J. (2015). Epigenetic modifications in fibrotic diseases: implications for pathogenesis and pharmacological targets. Journal of Pharmacology and Experimental Therapeutics, 352(1), 2–13. doi:10.1124/jpet.114.219816.

34. Yue, L., & Yao, H. (2016). Mitochondrial dysfunction in inflammatory responses and cellular senescence: pathogenesis and pharmacological targets for chronic lung diseases. British journal of pharmacology, 173(15), 2305–2318. doi:10.1111/bph.13518.

35. Zhu, G. F., Guo, H. J., Huang, Y., Wu, C. T., & Zhang, X. F. (2015). Eriodictyol, a plant flavonoid, attenuates LPS‑induced acute lung injury through its antioxidative and anti‑inflammatory activity. Experimental and therapeutic medicine, 10(6), 2259–2266. doi:10.3892/etm.2015.2827.
How to Cite
Korol, T., & Ahafonov, K. (2019). Clinical-morphological study of lung diseases in basic treatment with the use of antioxidants of different origin and without. Reports of Vinnytsia National Medical University, 23(4), 723-727.