Features of rheoencephalography in children with primary mitral valve prolapse


  • A.V. Kuleshov National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • L.M. Bulat National Pirogov Memorial Medical University, Vinnytsya, Ukraine https://orcid.org/0000-0002-7663-3598
  • Y.A. Medrazhevskaya National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • S.L. Malyk National Pirogov Memorial Medical University, Vinnytsya, Ukraine
  • I.V. Chigir National Pirogov Memorial Medical University, Vinnytsya, Ukraine
Keywords: children, mitral valve prolapse, cerebral hemodynamics, rheoencephalography.

Abstract

Annotation. Mitral valve prolapse (MVP), as a manifestation of connective tissue dysplasia, is of great interest in the field of medicine. It occupies an important place in the structure of diseases of the cardiovascular system, which is mainly due to its high incidence and possible complications. MVP is detected in almost 2–3% of the population. In addition, this pathology with a genetic predisposition is a manifestation of a connective tissue defect and is rare in newborns and at an early age, which characterizes it as a progressive disease. At the moment, the features of cerebral hemodynamics in children with MVP are not well understood. The aim of our study was to study cerebral hemodynamics in children with primary mitral valve prolapse using quantitative indicators of rheoencephalography (REG). The study included patients with primary MVP. Under our supervision, there were 106 children aged 13 to 17 years. The control group included 23 healthy children at the same age. All children underwent a REG with quantitative indicators. In children with MVP, there is a variability in the results of REG in the cerebral hemispheres. Vascular elasticity is significantly reduced due to anacrot time increase (p<0.001), which, in fact, is characteristic of the hypertonic type of blood flow (57.5%). It can be argued that in children there is a hypovolemic type of blood flow in the form of a decrease in the rheographic index relative to the control group (p<0.05). There is a tendency to vascular tone tension of all calibers according to the absence of statistically significant deviations of the corresponding indicators (dictrotic index and the ratio of the duration of the ascending phase to the duration of the entire pulse wave). The same picture is observed with venous blood flow, according to the values of the dystolic index in the carotid artery basin. In the basin of the vertebral artery there is a tendency to increase the tone of small vessels and venous vessels. Thus, in children with mitral valve prolapse, cerebral blood flow changes in the form of hypovolemia in the carotid artery basin and normovolemia in the vertebral artery basin according to REG parameters; in this group of children with MVP, there is a tendency to tension in the tone of blood vessels of all calibers according to the absence of statistically significant deviations of the corresponding indicators (dictrotic index and the ratio of the duration of the ascending phase to the duration of the entire pulse wave). Also, patients with MVP should be constantly monitored by narrow specialists (cardiologists, neurologists) for timely and adequate recovery.

References

1. Alekseeva, T. N., Tihomirova, M. A., Alieva, F. V., Garmotko, A. A., & Druzhinina, T. V. (2017). Osobennosti cerebralnoj gemodinamiki v zavisimosti ot vegetativnoj reaktivnosti u podrostkov s normalnym arterialnym davleniem [Features of cerebral hemodynamics depending on autonomic reactivity in adolescents with normal blood pressure]. Smolenskij medicinskij almanah – Smolensk Medical Almanac, 3, 50–55.

2. Zhivotova, V. A., & Voronova, N. V. (2010). Reoencefalograficheskoe issledovanie asimmetrii mozgovogo krovotoka u detej 8–11 let v pokoe i pri vypolnenii informacionnoj nagruzki [Rheoencephalographic study of the asymmetry of cerebral blood flow in children 8-11 years old at rest and when performing an information load]. Fiziologiya adaptacii, Materialy 2-j Vserossijskoj nauchno-prakticheskoj konferencii Volgograd, 22–24 iyunya, 248–251 [Physiology of adaptation. Materials of the 2nd all-russian scientific and practical conference Volgograd, June 22–24, 248–251].

3. Zaharova, I. N., Tvorogova, T. M., Stepurina, L. L., Pshenichnikova, I. I., Vorobeva, A. S., & Kuznecova, O. A. (2015). Vegetativnaya distoniya v praktike pediatra [Vegetative dystonia in the practice of a pediatrician]. Medicinskij sovet – Medical Council, 14, 98–104.

4. Kalaeva, G. Yu., Hohlova, O. I., Vasileva, N. D., & Vlasova, I. V. (2013). Osobennosti nervnoj sistemy u podrostkov s nedifferencirovannoj displaziej soedinitelnoj tkani [Features of the nervous system in adolescents with undifferentiated connective tissue dysplasia]. Mat i ditya v Kuzbasse – Mother and Child in Kuzbass, 1(52), 13–17.

5. Klemenov, A. V. (2017). Prolaps mitralnogo klapana: sovremennye vzglyady i nereshennye voprosy (obzor) [Mitral valve prolapse: current views and unresolved issues (review)]. Sovremennye tehnologii v medicine – Modern technologies in medicine, 9(3), 126–137.

6. Kuleshov, A. V. (2017). Sostoyanie vegetativnoj nervnoj sistemy u detej s nedifferencirovannoj displaziej soedinitelnoj tkani [The state of the autonomic nervous system in children with undifferentiated connective tissue dysplasia]. Pediatriya – Pediatrics, 96(3), 101–106. DOI: 10.24110/0031-403X-2017-96-3-101-106.

7. Kulniyazova, G. M., Davidovich, S. G., Sejpenova, A. N. & Sauleeva, F. S. (2015). Optimizaciya diagnostiki prolapsa mitralnogo klapana i osobennostej ego techeniya v detskom vozraste [Optimization of the diagnosis of mitral valve prolapse and features of its course in childhood]. Arhiv vnutrennej mediciny – Archive of Internal Medicine, 3 (23), 14–17.

8. Maidannyk, V. H., Mitiuriaieva-Korniiko, I. O., Kukhta, N. M., Hnyloskurenko, H. V. (2017). Vehetatyvni dysfunktsii u ditei. Paroksyzmalna vehetatyvna nedostatnist: monohrafiia [Vegetative dysfunction in children. Paroxysmal vegetative insufficiency]. Kyiv: Lohos.

9. Mirzoyan, E. S., Babaev, M. V., Nelasov, N. Yu., Ajvazyan, Sh. G., Stizhko, N. O. (2018). Ehokardiograficheskij skrining detej i podrostkov pri planovoj dispanserizacii [Echocardiographic screening of children and teenagers during routine physical examination]. Medicinskij vestnik Yuga Rossii – Medical Herald of the South of Russia, 9 (4), 67–72. doi: 10.21886/2219–8075–2018–9–4–67–72.

10. Rodionova, E. Yu., & Chutko, L. S. (2016). Kliniko-psihofiziologicheskie osobennosti vegetativnoj disfunkcii u devushek s algodismenoreej [Clinical and psychophysiological features of autonomic dysfunction in girls with algodismenorea]. Zhurnal biomedicinskih issledovanij – Journal of Biomedical Research, 2, 31–36. doi: 1017238issn2308-3174.2016.2.31.

11. Smetanin, M. Yu., Nurgalievsa, S. Yu., Kononova, N. Yu., Pimenov, L. T., & Chernyshova, T. E. (2019). Neznachitelnye anomalii serdca kak proyavlenie displazii soedinitelnoj tkani: sovremennye metody diagnostiki [Minor anomalies of heart as a manifestation of connective tissue dysplasia: modern diagnostic methods]. Prakticheskaya medicina – Practical medicine, 17(2), 28–31. doi: 10.32000 / 2072-1757-2019-2-28-31.

12. Basso, C., Marra, M. P., Rizzo, S., De Lazzari M., Giorgi, B., Cipriani, A., … Iliceto, S. (2015). Arrhythmic mitral valve prolapsed and sudden cardiac death. Circulation, 132, 556–566. doi: 10.1161/CIRCULATIONAHA.115.016291.

13. Boudoulas, K. D., & Boudoulas, H. (2013). Floppy mitral valve (FMV)/mitral valve prolapse (MVP) and the FMV/MVP syndrome: pathophysiologic mechanisms and pathogenesis of symptoms. Cardiology, 126(2), 69–80. doi: 10.1159/000351094.

14. Delling, F. N., & Vasan, R. S. (2014). Epidemiology and pathophysiology of mitral valve prolapse: new insights into disease progression, genetics, and molecular basis. Circulation, 129(21), 2158–2170. doi: 10.1161/CIRCULATIONAHA.113.006702.

15. Deng, Y., Wei, S., Hu, S., Chen, J., Tan, Z., & Yang, Y. (2015). Ehlers-Danlos syndrome type IV is associated with a novel G984R COL3A1 mutation. Mol. Med. Rep., 12(1), 1119–1124. doi: 10.3892/mmr.2015.3488.

16. Guy, T. S., & Hill, A. C. (2012). Mitral valve prolapse. Annual review of medicin, 63(1), 277–292. doi: 10.1146/annurev-med-022811-091602.

17. Levine, R. A., Hagége, A. A., Judge, D. P., Padala, M., Dal-Bianco, J. P., Aikawa, E., ... Yacoub, M. H. (2015). Mitral valve disease-morphology and mechanisms. Nature Reviews Cardiology, 12(12), 689–710. https://doi.org/10.1038/nrcardio.2015.161.

18. Narayanan, K., Uy-Evanado, A., Teodorescu, C., Nichols, G. A., Gunson, K., … Chugh, S. S. (2015). Mitral Valve Prolapse and Sudden Cardiac Arrest in the Community. Heart Rhythm, 13(2), 498–503. doi: 10.1016/j.hrthm.2015.09.026.

19. Nordhues, B. D., Siontis, K. C., Scott, C. G., Nkomo, V. T., Ackerman, M. J., Asirvatham, S. J., & Noseworthy, P. A. (2016). Bileaflet mitral valve prolapse and risk of ventricular dysrhythmias and death. Journal of Cardiovascular Electrophysiology, 27(4), 463–468. doi: 10.1111/jce.12914.

20. Roy, H. A., & Green, A. L. (2019). The central autonomic network and regulation of bladder function. Frontiers in neuroscience, 13, 1–10. doi: 10.3389/fnins.2019.00535.

21. Silvestry, F. E., Cohen, M. S., Armsby, L. B., Burkule, N. J., Fleishman, C. E., Hijazi, Z. M., … Wang, Y. (2015). Guidelines for the Echocardiographic Assessment of Atrial Septal Defect and Patient Foramen Ovale: From the American Society of Echocardiography and Society for Cardiac Angiography and Interventions. Journal of the American Society of Echocardiography, 28, 910–58. doi: 10.1016/j.echo.2015.05.015.

22. Sung, Y. K., & Chung, L. (2015). Connective tissue disease-associated pulmonary arterial hypertension. Rheum. Dis. Clin. North. Am, 41(2), 295–313. doi: 10.1016/j.rdc.2015.01.003.
Published
2019-12-30
How to Cite
Kuleshov, A., Bulat, L., Medrazhevskaya, Y., Malyk, S., & Chigir, I. (2019). Features of rheoencephalography in children with primary mitral valve prolapse. Reports of Vinnytsia National Medical University, 23(4), 632-637. https://doi.org/https://doi.org/10.31393/reports-vnmedical-2019-23(4)-13