Effect of biliopancreatic loop length mini gastric bypass on metabolic disorders resolution and nutritional deficiency


Keywords: morbid obesity, mini-gastric bypass, biliopancreatic loop, malnutrition

Abstract

Recently, the International Federation of Obesity Surgery (IFSO) has recognized gastric bypass surgery as one of the major bariatric / metabolic surgeries. However, the issue of nutritional deficiency after mini-shunting, which leads to repeated surgical interventions for deficient states, remains debatable. Efforts to balance the loss of excess body weight, compensation for concomitant metabolic disorders and nutritional insufficiency make the issue of the “ideal” length of the biopancreatic loop relevant. Therefore, the purpose of the study was to compare the bariatric and metabolic effects of mini-shunting of the stomach depending on the length of the biliary pancreatic loop. The study included 42 patients (24 women (57.1%) and 18 men (42.9%)), aged 24 to 65 years, with a body mass index (BMI) of 40 kg / m2 and above, with a mini-gastric bypass with minimally invasive access. The operation consisted of forming a long gastric reservoir along the small curvature of the stomach with the imposition of a semi-manual anastomosis with a loop of the small intestine 200–250 cm from the ligament of the Trinity. The length of the biopancreatic loop was selected according to the body mass index (200 cm — <45 kg / m2 (23 patients), 250+ cm — ˃45 kg / m2 (15 patients)) and the nature of the concomitant metabolic disorders. Anthropometric, laboratory and instrumental research methods were used. The level of HbA1c and the level of triglycerides were determined. The results were evaluated at 1, 3, 6, 9 and 12 months after surgery. Statistical processing of data was performed using StatPlus 6 Profesional. Postoperative complications were diagnosed in 3 (7.2%) patients. An early complication of Twisted pouch, which required repeated surgery, was observed in 1 (2.4%) patient. Late complications (peptic ulcer of gastroenteroanastomosis and insufficient weight loss) were found in 2 (4.8%) patients. The average percentage of excess body weight loss in the 200 cm and 250 cm group was 70.1 ± 0.8% and 71.8 ± 0.6% (p>0.05), respectively; type 2 diabetes mellitus was diagnosed in 5 (83.3%) and 7 (87.5%) patients, respectively; dyslipidemia compensation was achieved in 3 (50%) and 5 (71.4%) patients, respectively; hypocalcaemia was detected in 1 (12.5%) and 3 (27.3%) patients, respectively; decreased levels of iron were diagnosed in 1 (12.5%) and 2 (18.2%) patients, respectively. Thus, the results obtained indicate that as the length of the loop increases, the metabolic effect increases, but the risk of electrolyte exchange disorders may increase.

References

1. Abellan, I., Luján, J., Frutos, M. D., Abrisqueta, J., Hernández, Q., López, V., & Parrilla, P. (2014). The influence of the percentage of the common limb in weight loss and nutritional alterations after laparoscopic gastric bypass. Surg. Obes. Relat. Dis., 10 (5), 829–83. https://doi.org/10.1016/j.soard.2014.06.009.

2. Ahuja, A., Tantia, O., Goyal, G., Chaudhuri, T., Khanna, S., Poddar, A., … Majumdar, K. (2018). MGB-OAGB: Effect of Biliopancreatic Limb Length on Nutritional Deficiency, Weight Loss, and Comorbidity Resolution. Obes. Surg., 28 (11), 3439-3445. https://doi.org/10.1007/s11695-018-3405-7.

3. American Diabetes Association (2016). Obesity management for the treatment of type 2 diabetes. Sec. 6. In Standards of Medical Care in Diabetes - 2016. Diabetes Care, 39 (1), 47–51. https://doi.org/10.2337/dc16-S009.

4. Brolin, R. E., & Cody, R. P. (2007). Adding malabsorption for weight loss failure after gastric bypass. Surg. Endosc., 21, 1924–6. https://doi.org/10.1007/s00464-007-9542-z.

5. Brolin, R. E., Kenler, H. A., Gorman, J. H., & Cody, R. P. (1992). Long-limb gastric bypass in the super obese: a prospective randomized study. Ann. Surg., 215, 387–95. https://doi.org/10.1097/00000658-199204000-00014.

6. Brolin, R. E., LaMarca, L. B., Kenler, H. A., & Cody, R. P. (2002). Malabsorptive gastric bypass in patients with superobesity. J. Gastrointest. Surg., 6, 195–205. https://doi.org/10.1016/s1091-255x(01)00022-1.

7. Buchwald, H., Estok, R., Fahrbach, K., Banel, D., Jensen, M. D., Pories, W. J., … Sledge, I. (2009). Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am. J. Med., 122 (3), 248–56. http://dx.doi.org/10.1016/j.amjmed.2008.09.041.

8. Carbajo, M., García-Caballero, M., Toledano, M., Osorio, D., García-Lanza, C., & Carmona, J. A. (2005). Oneanastomosis gastric bypass by laparoscopy: results of the first 209 patients. Obes. Surg., 15, 398–404. https://doi.org/10.1381/0960892053576677.

9. Chevallier, J. M., Arman, G. A., Guenzi, M., Rau, C., Bruzzi, M., Beaupel, N., … Berger, A. (2015). One thousand single anastomosis (omega loop) gastric bypasses to treat morbid obesity in a 7-year period: outcomes show few complications and good efficacy. Obes. Surg., 25, 951–8. https://doi.org/10.1007/s11695-014-1552-z.

10. De Luca, M., Angrisani, L., Himpens, J., Busetto, L., Scopinaro, N., Weiner, R., … Shikora, S. (2016). Indications for surgery for obesity and weight-related diseases: position statements from the International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO). Obes. Surg., 26 (8), 1659–96. https://doi: 10.1007/s11695-016-2271-4.

11. De Luca, M., Tie, T., Ooi, G., Higa, K., Himpens, J., Carbajo, M.A., … Brown, W. A. (2018). Mini gastric bypass-one anastomosis gastric bypass (MGB-OAGB)-IFSO position statement. Obes. Surg., 28, 1188–206. https://doi.org/10.1007/s11695-018-3182-3.

12. Fisher, B. L., Buchwald, H., Clark, W., Champion, J. K., Fox, S. R., … Sugerman, H. J. (2001). Mini-gastric bypass controversy. Obes. Surg., 11 (6), 773–7. https://doi: 10.1381/09608920160558777.

13. Genser, L., Soprani, A., Tabbara, M., Siksik, J. M., Cady, J., Carandina, S. (2017). Laparoscopic reversal of mini-gastric bypass to original anatomy for severe postoperative malnutrition. Langenbeck's Arch. Surg., 402, 1263–70. https://doi.org/10.1007/s00423-017-1615-4.

14. Grundy, S. M. (2019). AHA/ACC/AACVPR/AAPA/ABC/ACPM /ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol., 73 (24), 3168–3209. https://doi.org/10.1016/j.jacc.2018.11.002.

15. Himpens, J. M., Vilallonga, R., Cadière, G. B., & Leman, G. (2016). Metabolic consequences of the incorporation of a roux limb in an omega loop (mini) gastric bypass: evaluation by a glucose tolerance test at mid-term follow-up. Surg. Endosc., 30, 2935–45. https://doi.org/10.1007/s00464-015-4581-3.

16. Komaei, I., Sarra, F., Lazzara, C., Ammendola, M., Memeo, R., Sammarco, G., … Currò, G. (2019). One Anastomosis Gastric. Bypass-Mini Gastric Bypass with Tailored Biliopancreatic Limb Length Formula Relative to Small Bowel Length: Preliminary Results. Obes. Surg., 29 (9), 3062–3070. https://doi.org/10.1007/s11695-019-04019-8.

17. Lee, W. J., Wang, W., Lee, Y. C., Huang, M. T., Ser, K. H., & Chen, J. C. (2008). Laparoscopic mini-gastric bypass: experience with tailored bypass limb according to body weight. Obes. Surg., 18, 294–9. https://doi.org/10.1007/s11695-007-9367-9.

18. Madhok, B. M., Mahawar, K. K., Hadfield, J. N., Courtney, M., Stubbing-Moore, A., Koshy, S., & Small, P. K. (2018). Haematological indices and haematinic levels after mini gastric bypass: a matched comparison with Roux-en-Y gastric bypass. Clin. Obes., 8 (1), 43–9. https://doi.org/10.1111/cob.12227.

19. Mahawar, K. K., Carr, W.R.J., Balupuri, S., & Small, P. K. (2014). Controversy surrounding ‘mini’ gastric bypass. Obes. Surg., 24 (2), 324–33. https://doi: 10.1007/s11695-013-1090-0.

20. Mahawar, K. K., Himpens, J., Shikora, S. A., Chevallier, J. M., Lakdawala, M., De Luca, M., … Small, P. K. (2018). The first consensus statement on one anastomosis/mini gastric bypass (OAGB/MGB) using a modified Delphi approach. Obes. Surg., 28 (2), 303–12. https://doi.org/10.1007/s11695-017-3070-2.

21. Mahawar, K. K., Jennings, N., Brown, J., Gupta, A., Balupuri, S., & Small, P. K. Mini gastric bypass: systematic review of a controversial procedure. Obes. Surg., 23 (11), 1890–8. https://doi.org/10.1007/s11695-013-1026-8.

22. Mahawar, K. K., Kumar, P., Parmar, C., Graham, Y., Carr, W. R., Jennings, N., … Small, P. K. (2016). Small bowel limb lengths and Roux-en-Y gastric bypass: a systematic review. Obes. Surg., 26, 660–71. https://doi.org/10.1007/s11695-016-2050-2.

23. Mahawar KK, Parmar C, Carr WRJ, Jennings N., Schroeder N., Small P.K. (2018). Impact of biliopancreatic limb length on severe protein–calorie malnutrition requiring revisional surgery after one anastomosis (mini) gastric bypass. J. Minim. Access Surg., 14 (1), 37–43. https://doi.org/10.4103/jmas.JMAS_198_16.

24. McConnell, D. B., O’Rourke, R. W., & Deveney, C. W. (2005). Common channel length predicts outcomes of biliopancreatic diversion alone and with the duodenal switch surgery. Am. J. Surg., 189, 536–40. https://doi.org/10.1016/j.amjsurg.2005.01.023.

25. Nelson, W. K., Fatima, J., Houghton, S. G., Thompson, G. B., Kendrick, M. L., Mai, J. L., … Sarr, M. G. (2006). The malabsorptive very, very long limb Roux-en-Y gastric bypass for super obesity: results in 257 patients. Surgery, 140, 517–23. https://doi.org/10.1016/j.surg.2006.06.020.

26. Olchowski, S., Timms, M. R., O'Brien, P., Bauman, R., & Quattlebaum, J. K. (2001). More on mini gastric bypass. Obes. Surg., 11 (4), 532.

27. Parmar, C. D., Mahawar, K. K., Boyle, M., Carr, W. R., Jennings, N., Schroeder, N., … Small, P. K.. (2016). Mini gastric bypass: first report of 125 consecutive cases from United Kingdom. Clin. Obes., 6, 61–7. https://doi.org/10.1111/cob.12124.

28. Professional Practice Committee (2018): Standards of Medical Care in Diabetes-2018. Diabetes Care, 41 (1), 3. https://doi.org/10.2337/dc18-SPPC01.

29. Rutledge, R. (2001). The mini-gastric bypass: experience with the first 1,274 cases. Obes. Surg., 11 (3), 276–80. https://doi: 10.1381/096089201321336584.

30. Scopinaro, N., Gianetta, E., Civalleri, D., Bonalumi, U., & Bachi, V. (1979). Bilio-pancreatic bypass for obesity: initial experience in man. Br. J. Surg., 66 (9), 618–20. https://doi.org/10.1002/bjs.1800660906.

31. Sjöström, L., Narbro, K., Sjöström, C. D., Karason, K., Larsson, B., Wedel, H., … Carlsson, L. M. (2007). Effects of bariatric surgery on mortality in Swedish obese subjects. N. Engl. J. Med., 357 (8), 741–52. https://doi: 10.1056/NEJMoa066254.

32. Sugerman, H. J., Kellum, J. M., & De Maria, E. J. (1997). Conversion of proximal to distal bypass for failed gastric bypass for superobesity. J. Gastrointest. Surg., 1, 517–26. https://doi.org/10.1016/s1091-255x(97)80067-4.

33. Tacchino, R. M. (2015). Bowel length: measurement, predictors, and impacton bariatric and metabolic surgery. Surg. Obes. Relat. Dis., 11 (2), 328–34. https://doi.org/10.1016/j.soard.2014.09.016.

34. Zorrilla-Nunez, L. F., Campbell, A., Giambartolomei, G., Lo Menzo, E., Szomstein, S., & Rosenthal, R. J. (2019). The importance of the biliopancreatic limb length in gastric bypass: A systematic review. Surg. Obes. Relat. Dis., 15 (1), 43–49. https://doi.org/10.1016/j.soard.2018.10.013.
Published
2019-09-02
How to Cite
Tyvonchyk, O., Moskalenko, V., & Vinogradov, R. (2019). Effect of biliopancreatic loop length mini gastric bypass on metabolic disorders resolution and nutritional deficiency. Reports of Vinnytsia National Medical University, 23(3), 434-438. https://doi.org/https://doi.org/10.31393/reports-vnmedical-2019-23(3)-16