An outlook of polyetheretherketone (PEEK) implants made by additive manufacturing usage

  • A.V. Grigoryan
  • M.P. Rud
Keywords: polyetheretherketone, PEEK, implant, additive production, 3D printing


The aim of the article is to systematize and analyze the data on the biocompatibility of polyetheretherketone and the ways of its modification for constructing the technology for the production of individual implants with the help of additive methods. The search for studies was conducted using the English-language textbase of the scientific publications of PubMed. The search was made using the keywords that abbreviations: PEEK, implant, biocompatibility. The review describes the characteristics of a new thermoplastic with biocompatible properties - polyetheretherketone (PEEK). The listed factors that influence the possibility of using individual implants with PEEK by additive production. The prospect of gradual replacement of titanium implants is analyzed. So, the use of implants from PEEK is in most cases in the experimental stage. Further research is needed on the choice of the best method for manufacturing the implant by an additive method and for modifying the physical and biological properties of the polymer.


1. Almasi, D., Iqbal, N., Sadeghi, M., Sudin, I., Kadir, A., Rafiq, M. & Kamarul, T. (2016). Preparation methods for improving PEEK's bioactivity for orthopedic and dental application: a review. International journal of biomaterials, ID 8202653, 12 p. doi: 10.1155/2016/8202653.

2. Bubik, S., Payer, M., Arnetzl, G., Kaltenegger, H., Leithner, A., Klampfl, A. & Lohberger, B. (2017). Attachment and growth of human osteoblasts on different biomaterial sur faces. International journal of computerized dentistry, 20 (3), 229- 243. R etrieved from https://doi.or g/10.1016/ j.msec.2017.11.030.

3. Cicala, G., Latteri, A., Del Curto, B., Lo Russo, A., Recca, G., & Fare, S. (2017). Engineering thermoplastics for additive manufacturing: a critical perspective with experimental evidence to support functional applications. Journal of applied biomaterials & functional materials, 15 (1), 10-18. doi: 10.5301/jabfm.5000343.

4. Final Report - CUSTOM-IMD (SME Supply Chain Integration for Enhanced Fully Customisable Medical Implants, using new biomaterials and rapid manufacturing technologies, to enhance the quality of life). Retrieved from publication/rcn/13306_en.html.

5. Honigmann, P., Sharma, N., Okolo, B., Popp, U., Msallem, B. & Thieringer, F. M. (2018). Patient-Specific Surgical Implants Made of 3D Printed PEEK: Material, Technology, and Scope of Surgical Application. Biomed. Res. Int., Mar. 19, 4520636. doi: 10.1155/ 2018/4520636.

6. Kim, M. M., Boahene, K. D., & Byrne, P. J. (2009). Use of customized polyetheretherketone (PEEK) implants in the reconstruction of complex maxillofacial defects. Archives of fac ial plas tic surgery, 11 (1) , 53-57. doi: 10.1001/ archfaci.11.1.53.

7. Kurtz, S. M., & Devine, J. N. (2007). PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials, 28 (32), 4845-

4869. doi: 10.1016/j.biomaterials.2007.07.013.

8. Lethaus, B., Safi, Y., ter Laak-Poort, M., Kloss-Brandstatter, A., Banki, F., Robbenmenke, C. ... Kessler, P. (2012). Cranioplasty with customized titanium and PEEK implants in a mechanical stress model. Journal of neurotrauma, 29 (6), 1077-1083. doi: 10.1089/neu.2011.1794.

9. Ma R. & Tang, T. (2014). Current strategies to improve the bioactivity of PEEK. Int. J. Mol. Sci., 15 (4), 5426-45. doi: 10.3390/ijms15045426.

10. Mahjoubi, H., Buck, E., Manimunda, P., Farivar, R., Chromik, R., Murshed, M. & Cerruti, M. (2017). Surface phosphonation enhanc es hydroxyapatite c oating adhes ion on polyetheretherketone and its osseointegration potential. Acta Biomater ., J an 1 (47), 149-158. doi: 10.1016/ j.actbio.2016.10.004.

11. Manning, L. Custom skull implants on demand? Retrieved from


12. Poulsson, A. H., Eglin, D., Zeiter, S., Camenisch, K., Sprecher, C., Agarwal, Y. ... Richards, R. G. (2014). Osseointegration of machined, injection moulded and oxygen plasma modified PEEK implants in a sheep model. Biomaterials, 35 (12), 3717- 3728. doi: 10.1016/j.biomaterials.2013.12.056.

13. Punchak, M., Chung, L. K., Lagman, C., Bui, T. T., Lazareff, J., Rezzadeh, K. ... Yang, I. (2017). Outc omes following polyetheretherketone (PEEK) cranioplasty: Systematic review and meta-analysis. Journal of Clinical Neuroscience, 41, 30- 35. doi: 10.1016/j.jocn.2017.03.028.

14. Ren, Y., Sikder, P., Lin, B. & Bhaduri, S. B. (2018). Microwave ass isted coating of bioactive amorphous magnesium phosphate (AMP) on polyetheretherketone (PEEK). Mater. Sci. Eng. C Mater. Biol. Appl., Apr 1, 85, 107-113. doi: 10.1016/ j.msec.2017.12.025.

15. Sagomonyants, K. B., Jarman-Smith, M. L., Devine, J. N., Aronow, M. S. & Gronowicz, G. A. (2008). The in vitro response of human osteoblas ts to polyether etherketone (PEE K) substrates compared to commercially pur e titanium. Biomaterials, 29 (11), 1563- 1572. doi: 10.1016/ j.biomaterials.2007.12.001.

16. Wu, W., Geng, P., Li, G., Zhao, D., Zhang, H. & Zhao, J. (2015).

Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. Materials, 8 (9), 5834-5846. doi: 10.3390/ma8095271.
How to Cite
Grigoryan, A., & Rud, M. (2018). An outlook of polyetheretherketone (PEEK) implants made by additive manufacturing usage. Reports of Vinnytsia National Medical University, 22(3), 569-571.