Antistaphylococcal activity of carbonic acid extract of hops


  • V.V. Nevmerzhitsky
  • V.Yu. Ivannik
  • V.V. Kazmirchuk
  • T.N. Moiseenko
  • T.A. Volkov
  • I.I. Torianyk
  • L.K. Sorokoumova
  • V.P. Sorokoumov
Keywords: carbonic acid extract of hops, Staphylococcus, antimicrobial activity.

Abstract

The fight against staphylococcal infection, increasing the effectiveness of methods of prevention and treatment of diseases of staphylococcal etiology is of interest to scientists and practitioners, both in Ukraine and around the world. The urgency of this problem is growing rapidly, as there is a tendency to increase the resistance of not only staphylococci, but also other gram-positive bacteria. The spread of methicillin-resistant staphylococci restricts the choice of antibiotics for the treatment of diseases of staphylococcal etiology. Staphylococcus aureus is the most common and dangerous type, which is one of the main factors of purulent-inflammatory lesions of the skin and mucous membranes. As a result of mutations, pathogenic staphylococci acquired resistance to antibacterial drugs. The main disadvantage of modern antibiotics is their non-selectivity. As a result of mutations, pathogenic staphylococci acquired resistance to antibacterial drugs. The main disadvantage of modern antibiotics is their non-selectivity. One of the unique and promising medicinal plants, which contains a rich complex of biologically active substances (BAS), is common hops (Humulus lupulus L.). The complex of BAS (flavonoids, hormones, vitamins, bitter, phenolic compounds, essential oils) causes anti-inflammatory, bactericidal, hyposensitizing and analgesic action of hops. The purpose of this work is to determine the antistaphylococcal activity of the carbon dioxide extract of hops and to justify the development on its basis of new antimicrobial agents for the prevention and treatment of infectious and purulent-inflammatory diseases. The following methods were used: microbiological (method of diffusion into agar (well method)) and mathematical and statistical. The high antimicrobial activity of the carbon dioxide extract of hops has been established for museum test strains of the genus Staphylococcus. The results of the studies testify to the prospects of further study of the bactericidal properties of the extract of hops carbon dioxide with the aim of creating effective antimicrobial agents on its basis for the prevention and treatment of infectious and purulent-inflammatory diseases of staphylococcal etiology.

References

1. Beloborodov, V. B. (2004). Rezistentnye grampolozhitelnye mikroorganizmy: sovremennye vozmozhnosti i perspektivy terapii. [Resistant Gram-positive microorganisms: modern possibilities and prospects of therapy]. Infekcii i antimikrobnaya terapiya – Infections and antimicrobial therapy, 6 (1), 88–122.

2. Berdnikova, N. G., Cyganko, D. V., & Zhuravleva, M. V. (2017). Puti optimizacii antimikrobnoj terapii pri lechenii zabolevanij organov dahaniya. [Ways of optimization of antimicrobial therapy in the treatment of diseases of respiratory organs]. Medicinskij sovet – Medical Council, 5, 42–48.

3. Dvoreckij, L. I. (2011). Antibakterialnaya terapiya infekcionnyh obostrenij COPD: bolnye s riskom plohogo otveta na antibakterialnuyu terapiyu [Antibacterial therapy of infectious exacerbations of COPD: patients with a risk of a poor response to antibiotic therapy]. Farmateka – Pharmatec, 10 (223), 38–42.

4. Kraeva, L. A., Burgasova, O. A. & Kunilova, E. S. (2015). Pategennyj potencial Moraxalla cataralis i Staphylococcus epedermidis pri vospalitelnyh processah verhnih dyhatelnyh putej. [The pathogenic potential of Moraxalla cataralis and Staphylococcus epedermidis in the inflammatory processes of the upper respiratory tract]. Klinicheskaya laboratornaya diagnostika – Clinical laboratory diagnostics, 11 (60), 58–61.

5. Liashenko, N. Y., Mykhailov N. H. & Rudыk R. Y. (2004). Fyzyolohyia y byokhymyia khmelia. [Physiology and Biochemistry of Hops]. Zhytomyr: Polissia – Zhitomir: Polissya.

6. Ballow, M. (2008). Approach to the patient with recurrent infections. Clin. Rev. Allergy Immunol., 34 (2), 129–140. doi: 10.1007/s12016-007-8041-2.

7. Desrosiers, M., Bendauah, Z., & Barbeau, J. (2007). Effectiveness of topical antibiotics on Staphyloccocus aureus biofilm in vitro. American Journal of Rhinology, 21 (2), 149−153. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17424869.

8. Doernberg, S. B., Lodise, T. P., Thaden, J. T., Munita, J. M., Cosgrove, S. E., Arias, C. A. … Holland, T. L. (2017). Gram-Positive Bacterial Infections: Research Priorities, Accomplishments, and Future Directions of the Antibacterial Resistance Leadership Group. Clinical Infectious Diseases, 64 (1), 24–29. doi: 10.1093/cid/ciw828.

9. Gosteva, V., Kruglovb, A., Kalinogorskaya, O., Dmitrenko, O., Khokhlova, O., Yamamoto, T. … Sidorenko, S. (2017). Molecular epidemiology and antibiotic resistance of methicillin-resistant Staphylococcus aureus circulating in the Russian Federation. Infection, Genetics and Evolution, 53, 189–194.

10. Infectious Diseases Society of American (IDSA). (Accessed October 2012.). Retrieved from http://www. idsociety.

11. Kuehnert, M. J., Hill, H. A., Kupronis, B. A. Tokars, J. I., Solomon, S. L. & Jernigan, D. B. (2005). Methicillinresistant Staphylococcus aureus hospitalizations (United States). Emerging Infectious Diseases, 11 (6), 868−872.

12. Lyashenko, N. I., Mikhailov, N. G., Rudyk, R. I. (2004). Physiology and biochemistry of hops. Zhytomyr: Polissia.

13. McDanel, J. S., Perencevich, E. N., Diekema, D. J. Herwaldt, L. A., Smith, T. C., Chrischilles, E. A. … Schweizer, M. L. (2015). Comparative effectiveness of beta-lactams versus vancomycin for treatment of methicillin-susceptible Staphylococcus aureus bloodstream infections among 122 hospitals. Clinical Infectious Disease, 61 (3), 361–367. doi: 10.1093/cid/civ308.

14. Sakoulas, G., Wormser, G. P., Visintainer, P., Aronow, W. S., & Nadelman, R. B. (2009). Relationship between population density of attorneys and prevalence of methicillin-resistant Staphylococcus aureus: is medical-legal pressure on physicians a driving force behind the development of antibiotic resistance? American journal of therapeutics, 16 (5), 1–6. doi: 10.1097/MJT.0b013e3181727946.

15. Salmanov, A. (2008). Epidemiological surveillance system for surgical site infections in Ukraine. EpiNorth, 9 (4), 139. Retrieved from http://zarifacenter.org/articles/article029.pdf.

16. Thwaites, G. E., Edgeworth, J. D., Gkrania-Klotsas, E., Kirby, A., Tilley, R., Torok, M. E. … Llewelyn, M. J. (2011). Clinical management of Staphylococcus aureus bacteraemia. Lancet Infectious Diseases., 11, 208–220. doi: 10.1016/S1473-3099(10)70285-1.

17. Van Hal, S. J., Jensen, S. O., Vaska, V. L. Espedido, B. A., Paterson, D. L. & Gosbell, I. B. (2012). Predictors of mortality in Staphylococcus aureus Bacteremia. Cliniсal Microbiology Reviews, 25 (2), 362–386. doi: 10.1128/CMR.05022-11.
Published
2018-12-05
How to Cite
Nevmerzhitsky, V., Ivannik, V., Kazmirchuk, V., Moiseenko, T., Volkov, T., Torianyk, I., Sorokoumova, L., & Sorokoumov, V. (2018). Antistaphylococcal activity of carbonic acid extract of hops. Reports of Vinnytsia National Medical University, 22(2), 297-300. https://doi.org/https://doi.org/10.31393/reports-vnmedical-2018-22(2)-13

Most read articles by the same author(s)