The problem of treating patients with mandibular fractures has not only medical but also social significance [28]. The vast majority of patients in this group are persons of working age, whose long stay in disability or incomplete rehabilitation with temporary disability cannot satisfy either the patient or the doctor. The main task of treating this category of patients is to restore the anatomical integrity of the mandible and, as a result, to restore the ability to perform many functions: speech, laughter, chewing, swallowing, fixing the teeth on the alveolar process of the mandible [7, 40, 45].

Existing surgical methods of treatment of fractures of the lower jaw, despite the constant development and improvement of approaches and techniques of providing assistance to the victims, do not allow to carry out completely adequate, qualitative reposition and fixation of fragments and to avoid post-traumatic and postoperative complications (osteomyelitis, slow consolidation of debris, splicing in the wrong position, etc.) [7, 20, 42]. This is due to the fact that they are mainly calculated and applied to fractures that occurred on the bone without osteoporosis. However, fractures of the mandible caused by impaired repair and low calcium are widespread and are reflected in the inconsistent statistics of morbidity, disability in patients of both sexes, middle and elderly age [5, 23, 40].

The purpose of our study is to analyze the current views on the etiopathogenesis of traumatic injuries of the mandible against osteoporosis and the use of drugs to correct the processes of reparative osteogenesis.

Currently, maxillofacial surgery is considered to be one of the most complex and popular areas of modern medicine. After all, a person's face primarily determines his personality and appearance, participates in the provision of such vital functions as breathing and eating, allows communication through language and facial expressions [17].

Among the lesions of the facial skeleton are the most common fractures of the mandible, which according to domestic and foreign authors account for from 70% to 85% of all bone fractures of the maxillofacial region [1, 5, 40]. The lower jaw is the only bone in the facial skull that breaks not only from direct but also indirect injuries. If direct injury is combined with indirect injury, multiple fractures usually occur [5].

Normally, bone repair occurs in several stages: inflammation, proliferation, differentiation, formation of tissue-specific structures, mineralization, remodeling of the regenerate and complete restoration of bone structures. Thus, both the processes of catabolism and anabolism take place in the formation of regenerate [4].

Consider the work concerning the study of the effectiveness of drugs for the correction of the processes of reparative osteogenesis in fractures of the mandible with and without osteopenia. Studies by B. V. Trifonov [19] and A. A. Chemichenko [21] found that the use of nanosized hydroxyapatite with the addition of a binder resorbable polymer, anti-inflammatory and antiseptic drugs activates the processes of bone regeneration of the mandible of laboratory animals.

To accelerate bone regeneration, granular hydroxyapatite preparations and various biodegraded materials are introduced into defects, which are the basis for bone...
In fractures resulting from osteoporosis, there is a direct influence of systemic osteoporosis on the bone tissue of the mandible. The use of the drug "Tizol" stimulates pronounced and accelerated regeneration of the microcirculatory bed for 3-5 days and the formation of collagen-reticulin framework for 6-8 days, which was ahead of the normal process for 5 days [12].

In rats, the use of osteoplastic material "TIOPROST" and material "KollapAn-M" conducted a comparative study of the speed and efficiency of regeneration of the bone tissue of the mandible. It was determined that when using "TIOPROST" the rate of filling the volume of bone defect is more than 1 month ahead of bone tissue regeneration compared to the use of the "KollapAn-M" material. After filling the bone defect with material "TIOPROST" a porous three-dimensional structure is formed, which is a tissue-engineering matrix and performs a supporting function [18].

Studies conducted by K. V. Barsukova and O. M. Gorshkova [2] have shown that the use of the titanium glycerosolvate aquacomplex in the treatment regimens of patients with mandibular fractures accelerates the regeneration process. In comparison with the use of standard treatment regimens, the processes of osteointegration have been observed for 2-3 days of using "Tizol".

Finish result of osteoreparation is the joint of bone fragments, but very often there is no cleft of fracture, which in most cases is caused by osteoporosis of the mandible - one of the variants of the disease of the human bone system, whose degenerative-dystrophic changes is manifested by dysfunction and pain [13].

Recent large-scale studies have shown that fractures of the lower jaw bone structures due to osteoporosis in people of all ages and genders are occurring more and more frequently [3, 36]. Defects of the lower jaw caused by tissue dysplasia, atrophy, post-radiation necrosis, benign or malignant neoplasms are less common [45].

There are two main forms of osteoporosis: primary and secondary. Primary osteoporosis more often develops in women during menopause, and in men in the elderly. Secondary osteoporosis is a complication of endocrine, inflammatory, hematologic, gastroenterological diseases, or drug therapy (e.g., with steroids) [43].

The direct influence of systemic osteoporosis on the bone tissue of the alveolar ridge, which is highly sensitive to hormonal regulating and controlling mechanisms of the organism, has been established [6]. Osteoporosis is characterized by a long period of recovery after fracture and often the treatment of fracture in osteoporosis requires additional surgery. Fractures in people with osteoporosis are more often accompanied by complications and disability during the rehabilitation period [7].

In fractures resulting from osteoporosis, there is a potential risk of local and systemic side effects, which are most noticeable in terms of the completion of reparative osteogenesis of damaged bone tissue, which is explained by imbalance in bone metabolism caused by local and local factors [29, 38]. All this affects bone strength, which reflects the integration of two basic characteristics: bone mineral density and bone quality (exchange, architectonics, damage accumulation and mineralization) [8].

For studies in the maxillofacial area, animal models are used to study the features of the repair of jaw defects in osteopenia. Most often, experimental studies of fracture consolidation are performed in laboratory rats after ovariectomy [39]. Also, delayed fracture healing is observed, in particular, in an animal model of osteoporosis induced by corticosteroids [26, 35].

In animal models, when fracture was healed, osteoporosis was reduced by a 40% reduction in the area of the corpus callosum and a 23% reduction in bone mineral density in the lesion area. The mechanical properties of the corn are also disturbed and the stability and strength of the fixation of the implants is impaired [11]. For greater persuasion, we will present both preclinical and clinical data.

In the works by E. V. Zheleznina [9], evidence of osteoporosis of alveolar bone that arose under the influence of dexamethasone for two weeks is presented. This revealed shifts in the activity of alkaline phosphatase, the levels of metabolites of nitric oxide with a constant content of Ca and P in the blood [10].

Y. Li et al. [37] found in simulations of rabbit defect a positive correlation between bone repair activity and the expression/activity of calcitonin gene-bound peptide and nitric oxide synthase.

I. V. Mayborodin et al. [15] proved that the introduction to rats into the area of mandible bone damage, a suspension of autologous bone marrow mesenchymal stem cells in the culture medium accelerates the development of bone tissue integrity restoration processes.

After surgery to fill the defect of the mandible bone enriched with platelet fibrin clot in rats, further effective replacement of the defect with bone tissue and bone marrow formation was observed [14].

The effectiveness of the use of autologous and allogeneic adipose tissue stem cells to optimize regeneration of the mandibular bone defect in rabbits was proved. Bioengineered design based on collagen sponge from hydroxyapatite GAPCOL (GAPCOL, "NGO polystyrene") for transplantation of adipose stem cells into bone tissue defect. Osteogenic stem cells induced by osteogenic differentiation have been shown to stimulate reparative osteogenesis. Moreover, the influence of autologous cells is more pronounced than allogenic cells (higher rate of bone matrix maturation) [22].

In the domestic and foreign scientific and medical literature there are practically no works devoted to the study of the ability to stimulate regeneration in fractures of the mandible with the help of placental therapy and calcium
preparations [3, 25, 40, 44]. Only the results of the study by Russian colleagues [3] of the effectiveness of implantation of PLATEX-choral (chorionic sheath preparation) into the fracture zone of the mandible to stimulate reparative osteogenesis of bone tissue can be named from the works. A. G. Guliuk et al. [7] improved the method of complex treatment of patients with mandibular fracture against the background of structural and metabolic changes in bone tissue with the combined use of calcium and zinc.

C. Roux et al. [41] and A. Avenell et al. [24] studied the repair process in osteoporotic, osteopenic fractures and evaluated the potential for the use of vitamin D and calcium drugs in slow or insufficient bone healing. We did not include any studies on drugs capable of influencing different stages of reparative osteogenesis of other body bones without and against osteoporosis.

The analysis of the literature showed the variety of existing methods of treatment of fractures of the mandible, which have a regenerative effect on bone tissue, which is confirmed by morphological methods of research [7, 13, 27, 41]. It should be noted that it is difficult to extrapolate the positive results of administration of the above-mentioned drugs to humans, as there is no evidence of safety or bi-similarity for patients. As a rule, the doses used in animals are several times higher than the therapeutic doses in humans [30]. Evidence of similarity in clinical studies on the model of the mandibular fracture caused by corticosteroids allows us to extrapolate the results of efficacy studies, provided that the investigated drugs have a similar mechanism of action in animals and humans [31, 32]. For preparations of cryopreserved tissue of the placenta and calcium preparations, their bio-analogy (bio-similarity) has been proved in relation to many indications for use [33, 34]. Therefore, with proper scientific justification, it is possible to extrapolate to other indications prior to their use (in our case it is a correction of reparative osteogenesis in osteoporosis).

Conclusions and prospects for further development

1. The analysis of the literature indicates that there are numerous reliable (confirmed by morphological studies) methods of treatment of fractures of the mandible, which are aimed specifically at improving the processes of reductive osteogenesis, which in turn indicates the urgency of the topic. In particular, works that have highlighted the features of healing of the fracture of the mandible in the background of comorbidities, namely, osteoporosis, are of particular scientific and practical value.

References

Modern views on etiopathogenesis of traumatic injuries of the lower jaw against the background of osteoporosis...

Saharov, A. V. (2011). Sravnitel'noe issledovanie reparativnoj regeneracii kostnoj tkani pri ispol'zovanii tkaneinzhenernoj matrice na osnove materiala "TIOPROST" i materiala "KOLLAPAN-M" [Comparative study of regenerative reconstruction of bone tissue using a tissue-engineering matrix based on the material "TIOPROST" and the material "KOLLAPAN-M"]. Geny i kletki - Genes and cells, 6 (4), 89-94.

Trifonov, B. V. (2013). Regeneracija kostnoj tkani pri zapopolnenii ee defekta kompozitom " titanovoe volokno - kostnoplasticheskij material" [Bone tissue regeneration when filling its defect with a composite "titanium fiber - osteoplastic material"]. Kompozity i nanostruktury - Composites and Nanostructures, 2 (18), 59-64.

Arosarena, O., Ducic, Y., & Telfesson, T. T. (2012). Mandible...
СУЧАСНЕ ВУЧЕННЯ ПРО ЕТІОПАТОГЕНЕЗ ТРАВМАТИЧНИХ УШКОДЖЕНЬ НИЖНЬОЇ ЩЕЛЕПІ НА ТЛІ ОСТЕОПОРОЗУ І ЗАСТОСУВАННЯ ПРЕПАРАТІВ ДЛЯ КОРЕКЦІЇ ПРОЦЕСІВ РЕПАРАТИВНОГО ОСТЕОГЕНОЗУ

Лікіцький О. О.

Анотація. Мета роботи - провести аналіз сучасних поглядів на етіопатогенез травматичних ушкоджень нижньої щелепи на тлі остеопорозу і застосування препаратів для корекції процесів репаративного остеогенезу.

СУЧАСНЕ УВЛЯКЕННЯ ПРО ЕТІОПАТОГЕНЕЗ ТРАВМАТИЧНИХ УШКОДЖЕНЬ НИЖНЬОЇ ЩЕЛЕПІ НА ТЛІ ОСТЕОПОРОЗУ І ЗАСТОСУВАННЯ ПРЕПАРАТІВ ДЛЯ КОРЕКЦІЇ ПРОЦЕСІВ РЕПАРАТИВНОГО ОСТЕОГЕНОЗУ

Вісник Вінницького національного медичного університету.

ISSN 1817-7883
eISSN 2522-9354
2019, Т. 23, №2
314
СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О ЭТИОПАТОГЕНЕЗЕ ТРАВМАТИЧЕСКИХ ПОВРЕЖДЕНИЙ НИЖНЕЙ ЧЕЛЮСТИ НА ФОНЕ ОСТЕОПОРОЗА И ИСПОЛЬЗОВАНИЯ ПРЕПАРАТОВ ДЛЯ КОРРЕКЦИИ ПРОЦЕССОВ РЕПАРАТИВНОГО ОСТЕОГЕНЕЗА
Лихицкий А. А.

Аннотация. Цель работы - провести анализ современных взглядов на этиопатогенез травматических повреждений нижней челюсти на фоне остеопороза и применения препаратов для коррекции процессов репаративного остеогенеза. Анализ сделан на основе обзора отечественных и зарубежных статей и исследований за 2006-2018 годы, пользуясь научно-методическими базами PubMed, eLIBRARY.RU, Web of Science. Повреждения нижней челюсти, в том числе переломы, достаточно распространенная патология как в Украине, так и в других странах мира, и связана с нарушением многих ключевых функций, в частности, с питанием и общением, а в случае осложнений - даже с нарушением эстетической функции. Одним из факторов, повышающих вероятность формирования переломов, является остеопороз - системное заболевание kostной ткани, характеризующееся уменьшением массы кости в единице объема и нарушением ее микроархитектуры. И если проблематика переломов нижней челюсти достаточно раскрыта, то особенности формирования переломов данной части на фоне остеопороза, недостаточно освещена как в украинских, так и в иностранных источниках. В данной статье представлены современные работы по этиологии и патогенезу травматических повреждений нижней челюсти на фоне остеопороза и современным методам коррекции процессов репаративного остеогенеза.

Ключевые слова: репаративный остеогенез, повреждения нижней челюсти, остеопороз, этиология и патогенез.